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ABSTRACT

The probability distribution of a model prediction is presented as a proper basis for evaluating the uncertainty
in a model prediction that arises from uncertainty in input values. Determination of important model inputs
and subsets of inputs is made through comparison of the prediction distribution with conditional prediction
probability distributions. Replicated Latin hypercube sampling and variance ratios are used in estimation of the
distributions and in construction of importance indicators. The assumption of a linear relation between model
output and inputs is not necessary for the indicators to be effective. A sequential methodology which includes
an independent validation step is applied in two analysis applications to select subsets of input variables which
are the dominant causes of uncertainty in the model predictions. Comparison with results from methods which
assume linearity shows how those methods may fail. Finally, suggestions for treating structural uncertainty for
submodels are presented.

iii NUREG/CR–6311





CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Executive Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Direction Taken in the Report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 BACKGROUND DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Two Perspectives for Performing Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Prediction Uncertainty from a Global Perspective .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Partitioning Prediction Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Linear Propagation of Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 General Analytical Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.3 Sampling Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Cautions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Model Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 MODELING UNCERTAINTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Input Uncertainty . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Structural Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 PREDICTION UNCERTAINTY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Prediction Probability Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Importance for Prediction Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Stochastic Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 PREDICTION VARIANCE AND IMPORTANCE INDICATORS . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Prediction Variance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Importance for Prediction Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.1 Variance of the Conditional Expectation (VCE) of Prediction. . . . . . . . . . . . . . . . . . . . . 17

5.2.2 Correlation Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.3 Partial VCE (PVCE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.4 Partial and Incremental Partial Correlation Ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.5 Conditional Correlation Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Conditional Moments and Model Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4 Beyond Regression Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 ESTIMATION FOR IMPORTANCE INDICATORS . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Basic Sampling Plan: Replicated LHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.1 Base Case Sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.2 Dependent Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v NUREG/CR–6311



6.2 Estimation for Individual Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2.1 Sample Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2.2 Prediction Variance Estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2.3 VCE Estimate .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.4 Correlation Ratio Estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.5 Critical Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.6 Notes on Approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Estimation for Augmentation by Individual Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3.1 Sample Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3.2 Conditional VCE and PVCE Estimates . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3.3 Partial and Incremental Partial Correlation Ratios Estimates. . . . . . . . . . . . . . . . . . . . . . 27

6.3.4 Conditional Correlation Ratio Estimate . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4 Estimation for Arbitrary Subsets of Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4.1 Sample Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4.2 VCE and Correlation Ratio Estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.5 Regression Interpretations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.6 Summary of Formulas for Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 STEPS IN UNCERTAINTY ANALYSIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Preliminary Considerations and Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1.1 Definitions of Model Predictions and Selection of Model Outputs. . . . . . . . . . . . . . . . . . . 31

7.1.2 Identification and Specification of Model Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1.3 Assignment of Probability Distributions . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1.4 Construction of the Base Case Set of Runs .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2 Sequential Screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.3 Validation and Diagnostic Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.4 Summary of Steps in Uncertainty Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 ANALYSIS APPLICATION I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.1 Problem Definition . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.1.1 Base Case Sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.1.2 Prediction Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.2 Sequential Screening Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.2.1 Stage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.2.2 Stage 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.2.3 Subsequent Stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9 ANALYSIS APPLICATION II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.1 Problem Definition . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.1.1 Base Case Sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.1.2 Prediction Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.2 Sequential Screening Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.2.1 Stage 1 for All Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.2.2 Subsequent Stages for EF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

NUREG/CR–6311 vi



9.3 Validation for EF . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.4 Validation for EF of Selections by Partial Rank Correlation Coefficient. . . . . . . . . . . . . . . . . . . 47

9.5 Subsequent Stages and Validation for CF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.6 Comparison of Important Inputs for EF, CF, and PD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10 SUBMODEL UNCERTAINTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.1 Competing Submodels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.2 Perturbation Method for a Single Submodel . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10.2.1 Scalar Submodel Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10.2.2 Vector Submodel Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10.2.3 Nonseparable Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10.3 Components of Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

12 REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Appendix A ADDITIONAL TECHNICAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 A General Variance Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.3 Derivation of Equation 5–6 and Motivation for the Partial Correlation Ratio . .. . . . . . . . . . . . . . 59

A.4 A Useful Derivation Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.5 One-way Analysis of Variance Analogy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.6 Two-way Analysis of Variance Analogy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Appendix B INPUTS TO MACCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Appendix C BREAKDOWN OF THE CORRELATION COEFFICIENT. . . . . . . . . . . . . . . . . . . . . . 65

vii NUREG/CR–6311





FIGURES

3.1 View of reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Model of reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Characterization of prediction uncertainty from input uncertainty. . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Characterization of prediction uncertainty from structural uncertainty. . . . . . . . . . . . . . . . . . . . . 11

4.1 Prediction probability distributionfy when all inputs vary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Unconditionalfy and conditionalfyjs
x

when some of the inputs are fixed. . . . . . . . . . . . . . . . . . 14

6.1 Ther replicates of an LHS design for one input . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8.1 Compartmental model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.2 Estimate of prediction densityfy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.3 OrderedR2

a
for single inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.4 Conditional densities ofy for 10 values offx1g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.5 Conditional densities ofy for 10 values offx2; � � � ; x84g . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.6 OrderedR2

a
for pairs of inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.7 Candidate input pairs inC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.8 OrderedR2

a
for triples of inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.9 Conditional densities ofy for 10 values offx1; x68; x69g . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.10 Conditional densities ofy for 10 values offx2; � � � ; x67; x70; � � � ; x84g . . . . . . . . . . . . . . . . . . . . 40

8.11 Conditional densities ofy for 10 values of the important inputs. . . . . . . . . . . . . . . . . . . . . . . . 40

8.12 Conditional densities ofy for 10 values of the less important inputs. . . . . . . . . . . . . . . . . . . . . . 40

8.13 Residual standard deviations in concentration units for candidate subsets. . . . . . . . . . . . . . . . . . . 41

8.14 Residual standard deviations for rank-y values for candidate subsets. . . . . . . . . . . . . . . . . . . . . . 41

9.1 Representativey(t) for EF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.2 Representativey(t) for CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.3 Representativey(t) for PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.4 TheR2(t) for 36 inputs for EF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.5 TheR2(t) for 36 inputs for CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.6 TheR2(t) for 36 inputs for PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.7 Representativey(t) for EF with 10 inputs fixed . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.8 ConditionalR2(t) for 26 inputs for EF with 10 inputs fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.9 Representativey(t) for EF with 15 inputs fixed . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.10 ConditionalR2(t) for 21 inputs for EF with 15 inputs fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.11 Representativey(t) for EF with 18 inputs fixed . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.12 Five sets of representativey(t) for EF with important inputs fixed. . . . . . . . . . . . . . . . . . . . . . . 47

9.13 Representativey(t) for EF with 7 inputs from PRCC-50 fixed. . . . . . . . . . . . . . . . . . . . . . . . . 48

9.14 Representativey(t) for EF with 13 inputs from PRCC-500 fixed. . . . . . . . . . . . . . . . . . . . . . . . 48

9.15 Representativey(t) for CF with 8 inputs fixed . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.16 ConditionalR2(t) for 28 inputs for CF with 8 inputs fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.17 Representativey(t) for CF with 14 inputs fixed . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.18 Five sets of representativey(t) for CF with important inputs fixed. . . . . . . . . . . . . . . . . . . . . . . 49

9.19 Means and standard deviations for CF with important inputs varying. . . . . . . . . . . . . . . . . . . . . 49

10.1 Calculation via a submodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.2 Choosing between two models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix NUREG/CR–6311



10.3 Choosing between two distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C.1 Simple event tree . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

NUREG/CR–6311 x



EXECUTIVE SUMMARY

The importance of evaluating uncertainty in model
predictions is well known to the Nuclear Regulatory
Commission (NRC), as evidenced in the assessment
of severe accident risks for five U.S. nuclear power
plants in their NUREG–1150 report. Because of the
need of NRC to quantify and understand uncertainty in
model predictions, they have been and continue to be a
driving force behind, for example, the use of simulation
methods and Latin hypercube sampling (LHS) to estimate
prediction probability distributions. Evaluation of the
importance of inputs with respect to prediction uncertainty
has been done, by and large, through regression-based
methods including regression and correlation coefficients.
Although regression-based methods have served well in
providing importance indicators in many applications,
they rely on linearity assumptions as the basis for their
effectiveness. Breakdown of the assumptions can result
in both failure to detect important inputs as well as false
detections. Moreover, independent validation has been
mostly overlooked as a means to confirm input selections
and to provide estimates of the true effect of important
inputs. These concerns constitute the motivation behind
the present work to provide a sound theoretical basis
together with effective methodologies for evaluating
prediction uncertainty.

Vulnerable points in commonly used methodologies are
addressed in three ways. First, the report shows that
input importance can derive directly from the prediction
probability distribution without reliance on specific
assumptions such as linearity to relate model inputs and
output. The report shows how regression-based methods
can fail when such assumptions are invalid. Second,
several types of variance ratios and sequential variable
selection are shown to be reasonable and effective for
identifying important inputs without dependence on
linearity assumptions. Third, the value of validation to
confirm input selections and to provide estimates of the
true effect of important inputs is demonstrated in two
analysis applications.

The methodology is shown to be effective in analysis
applications for two very different models. In the first
application—chosen because of the speed of model
calculations—the flow of material in an ecosystem is
described by a system of partial differential equations
with 84 input parameters. Because the model is very
fast running, subsets of inputs can be studied in detail.
The second application involves the nuclear power station

accident consequence analysis code called MACCS.
Prediction uncertainty in three outputs arising from input
uncertainty in 36 inputs is evaluated. This model runs
very much slower than the first, and so abbreviated subset
selection is employed. In both applications, sequential
subset selection using variance ratios successfully identifies
all important inputs. Thus, using the applications, the
report illustrates analysis methods that can be applied to
a wide variety of models.

The value of validation exercises to confirm input selection
and quantify prediction uncertainty is illustrated in the
analysis applications. Also illustrated through validation
are the effects of important inputs which were undetected
using partial rank correlation in the MACCS analysis.

The use of variance as an indicator of importance derives
from a simple theoretical development of uncertainty using
probability distributions. However, the idea that variance
relates to importance is not new and, in fact, can be shown
to underlie regression-based methods. Except for the cost
of reliable estimation of variance in terms of the number
of computer runs required—which can be significantly
more than that required for estimation of partial correlation
and regression coefficients—variance would be generally
preferred over regression-based indicators in evaluation
of prediction uncertainty. Fortunately, desktop computing
makes variance estimation feasible in many applications.

Variance-based methods are made practical through
development of a special LHS plan and heuristic
procedures for selecting important inputs. The idea of
the correlation ratio is extended to the partial correlation
ratio, paralleling the partial correlation coefficient in
linear models. The sequential procedures discussed in the
analysis applications provide more complete pictures than
are usually found of how different input combinations
relate to prediction uncertainty.

Finally, the report addresses the topic of uncertainty
in model predictions due to plausible alternative model
structures—structural uncertainty. There is uncertainty in
almost all model predictions because of approximate or
incomplete treatment of the phenomenology of the process
being modeled. For the most part, however, general
treatment of structural uncertainty is virtually impossible
owing to the conceptually large (possibly infinite) number
of alternative models. The report presents a formal
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basis for analysis and methods for analysis of structural
uncertainty in submodel calculations.

In summary, practical methods for evaluating prediction
uncertainty and a sound theoretical basis for them are

presented. The methodology provides an effective
description of the effects of input uncertainty that is more
complete and defensible than those provided by commonly
used regression-based techniques. Methods are illustrated
in analysis applications.
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1 INTRODUCTION

Evaluation of prediction uncertainty in a computer model
means the estimation of the variability in model prediction
due to uncertainty in input values and the determination
of the contribution to the variability from dominant model
inputs. When the mathematical form of a model makes
analytical determinations impossible, simulation methods
which include statistical estimation are used. Any of
several sampling methods, like simple random sampling
or Latin hypercube sampling (LHS), are suitable for
estimation of prediction uncertainty. For the second
part of evaluation, namely, identification of dominant
inputs and their contribution to prediction uncertainty,
regression methods are frequently employed. The most
commonly used indicator statistics are correlation and
partial correlation coefficients and regression coefficients,
with and without the rank transformation. It is well known
that statistics such as these derive their effectiveness from
an assumed linear, or monotonic, relationship between
model input variables and calculated prediction. Under
that assumption, the variance of the model prediction is
linear in input variances, and so the indicators properly
attribute contributions of variability to different input
variables. However, as the actual relation between
inputs and prediction becomes less linear, the ability of
regression indicators to function as intended diminishes
to the point where they can fail completely to identify
important inputs.

In order to development a cogent methodology for
evaluating prediction uncertainty, this report begins with
the probability distribution of a model prediction as a
proper basis for evaluating the uncertainty. From that
starting point, determination of important model inputs
and subsets of inputs is seen to arise from comparison
of the prediction distribution with conditional prediction
probability distributions. From the many ways to compare
probability distributions, a practical and intuitive one is
through variances. The effectiveness of general variance-
based indicators of importance does not depend on
assumptions about the form of the relationship between
inputs and prediction—in this sense, the indicators are
nonparametric. It is not suggested that use of regression-
based indicators should be discontinued; regression and
correlation have served well and will continue to be
necessary parts of analytical practices for long-running
computer models. However, reliance on these indicators
should be reduced in favor of nonparametric methods
when the nonparametric methods are practical.

The methodology for uncertainty analysis of computer
codes described in this report builds upon an earlier
research project of the author sponsored by the United
States Nuclear Regulatory Commission (NRC) and upon
other extensive literature. The first research project began
in 1975 when computer speed and costs severely limited
the application of statistical analysis to reactor safety
codes. Typically, the number of computer runs in an
analysis would be no more than 20 and might require
several weeks to complete at the nighttime computer
charge rate. To accurately quantify the “error” or
uncertainty in code calculations related to 15 to 30 input
parameters seemed almost impossible. In this setting,
LHS was developed by McKay, Conover, and Beckman
(1979). It allowed successful assessment of sensitivity
using partial rank correlation (McKay, Conover, and
Whiteman, 1976) and, with the same set of computer runs,
a reasonable measure of uncertainty (“error bands”) with
the tolerance interval (McKay and Bolstad, 1981).

The current project, begun in 1992, revisits the problem
almost 12 years later, in a new computing setting where
the desktop workstation can provide hundreds to thousands
of runs a day. The effect of this new computing power is
that what had been impossible—reasonable and effective
description of model prediction uncertainty via probability
distributions—is now a reality. Thus, current goals of
analysis have expanded: they are higher, broader, and
more optimistic than they were in the 1970s. Nevertheless,
the fundamental objective remains the same: to quantify
uncertainty in model predictions arising from uncertainty
in input values and to identify principal contributors
from among the model input variables and component
submodels.

1.1 Overview

A mathematical modelm(�) is a construction by which
an output or predictiony is determined from a set of
inputsx. Prediction uncertainty refers to the variability in
prediction due to plausible alternative input values. The
uncertainty about appropriate input values described by
probability distributions propagates through the model to
form a probability distribution for model prediction. The
model prediction distribution provides the description of
prediction uncertainty that is the object of investigation
in this report.

1 NUREG/CR–6311



1. Introduction

Another source of uncertainty arises in almost all
predictive or forecast models from their approximate or
incomplete treatment of the phenomenology of the process
being modeled. This source of uncertainty is termed
structural or model uncertainty. A general characterization
of structural uncertainty is much more difficult than one
for input uncertainty. The notion of plausible alternative
model structures is much larger than that of just alternative
input values. It can include, for example, all continuous
functions of an infinite number of input variables. Except
for restricted classes of plausible alternative model
structures (for example, when consideration is only
among several competing models) the general treatment
of structural uncertainty is virtually infeasible. Structural
uncertainty is certainly of great importance. However,
for the general case—the one usually encountered in
reactor safety applications—practical methods for analysis
have yet to be developed. Therefore, the prediction
uncertainty discussed in this report, but for one exception,
is that due to input uncertainty for an arbitrary but
specified model structure. The exception is for submodel
uncertainty. Under some circumstances, the effect of
structural uncertainty of a submodel calculation might be
evaluated relative to the effect of input uncertainty.

The application driving this work is the prediction
of consequences from serious nuclear power reactor
accidents. The input variables used in calculations in
the computer codes describe initial conditions, release
of radioactive material to the environment, transport of
the material through the environment and the material’s
effects on people. The code—the model—developed
from current understandings of physical processes through
laws of physics and empirically derived associations,
transforms input values into model predictions. At the
focus of uncertainty analysis is the unknown difference
between the model prediction and the outcome of an
accident.

The difference between model prediction and truth is
seldom known in the absolute sense outside of validation
tests. Nevertheless, knowledge of the variability in
prediction as input values change or different submodels
are used is valuable to people who develop models and
to those who use model predictions in the decision-
making process. It is the goal of this report to present
methods and procedures for uncertainty analysis which
will accurately describe variability in model prediction
and the contribution to that variability from various
(subsets of) inputs.

1.2 Audience

The audience for this report is seen as consisting of two
groups of people. Foremost, there are the technical people
who build and test models and who must assess both
adequacy and credibility of model prediction. Techniques
of uncertainty analysis presented in this report can provide
them with valid characterizations and descriptions of
prediction uncertainty and input importance to use in
their assessments. Moreover, the understanding of the
extent of prediction uncertainty in model calculations is
expected to contribute to their technical evaluations of
models. It is assumed that model builders and the people
who perform uncertainty analyses have a background in
mathematics and statistics.

The other group of people in the audience for this report
consists of decision-makers who use uncertainty analyses
in their work. It is hoped that the material presented will
illuminate the methods used in the uncertainty analyses
so that both strengths and limitations can be better
understood. Without doubt, the subject and methods of
uncertainty analysis are mathematical. Nevertheless, the
mathematical details of estimation of importance indicators
can be passed over without loss to understanding.

From whatever background, however, the reader is
assumed to be familiar with basic elements of probability
theory, including the concepts of random variable,
probability density function, and dependence of random
variables.

1.3 Direction Taken in the Report

Various statistical procedures are used in evaluation of
prediction uncertainty. Many of those used to identify
important model inputs are borrowed, by and large,
from regression analysis. Some others are based more
generally on variance decomposition. As a background,
the report presents a summary of these methods and
references several good comparative studies. Interestingly,
theoretical justification of many methods is strained, even
when empirical studies indicate that they perform well.
The need for a general and acceptable foundation for
methods development and justification is apparent. To
this end, the report examines modeling uncertainty in
the abstract to develop a general notion of importance
of inputs as being related to differences in probability
distributions. Importance indicators formed from variance
ratios then arise naturally from prediction variance, which
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is one manner through which the probability distributions
might be compared. Statistical estimation of a variety
of variance components used in importance indicators
is then presented. With the theoretical development

completed, procedures for performing uncertainty analyses
are outlined and carried out on two sample applications.
Finally, there is a short discussion of submodel uncertainty.
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2 BACKGROUND DEVELOPMENT

Many statistical methods and practices can be collected
under overlapping and sometimes indistinguishable
umbrellas of model analyses variously called sensitivity
analysis, sensitivity testing, error analysis, propagation of
error, uncertainty analysis, and the like. From these are
many that can be interpreted as foreshadowing or actually
composing analysis of prediction uncertainty. This section
reviews some of the methods from the point of view
of analysis of prediction uncertainty. Apologetically,
discussion of many applications of the wealth of methods
from the past are omitted for the sake of brevity.

2.1 Two Perspectives for
Performing Analyses

Two perspectives are used in model analysis (McKay,
1978 and 1988). One perspective focuses at points in the
space of input values, like a nominal or base case, and
is termed local relative to the input space. Historically,
analysis from the local perspective has been called
sensitivity analysis. The other perspective is from the
space of output values or predictions. As such, its focus
is not constrained a priori in the input space, and so it
is termed global relative to the input space. It is from a
global perspective that uncertainty analysis usually arises.

2.1.1 Local

From a local perspective, there is an input valuex0 of
interest, for which knowledge of changes in the prediction
y from small perturbations in inputsx aboutx0 is
desired. A common question in this situation concerns
propagation of error, characterized by the derivatives of
y with respect to the components ofx. Objectives for
study can be finding the direction, not necessarily parallel
to a coordinate axis, in whichy changes most rapidly
or finding the change iny for an arbitrary direction.
Issues like these lead to the concept of “critical” or
“important” variables (or directions) as being ones which
most account for change iny. For linear propagation
of error, individual components ofx are described as
important or not. When the direction for change is
arbitrary, meaning not necessarily along coordinate axes,
subsets of the inputs which define direction, rather than
individual inputs, become the issue. Typical of local
analyses are one-at-a-time variational studies about the
nominal input value.

2.1.2 Global

From a global perspective, interest lies in the eventy

exceeding (or not exceeding) specified values. Questions
that arise in this case are concerned with associating
particular inputs or segments of ranges of inputs with the
event. Objectives of study might be related to controlling
the event or to reducing its probability of occurrence in
the real world by adjusting the values of some of the
inputs. If costs are associated with the inputs, minimum
cost solutions might be sought.

Clearly, both perspectives have a place in model analysis.
In the local perspective, interest inx is restricted to a
(small) neighborhood of a single point, and the derivative
comes into play. In the global perspective, interest is
in values ofy, which might translate into a subset of,
or possibly just a boundary in, the input space. In this
case, the role of the derivative is less clear. What tends
to blend the two perspectives is the use of the derivative
to answer questions of a global nature. The practice is
appropriate in small enough neighborhoods where the
model is essentially linear, meaning that the derivative
does not change substantially withx0; or that, to first-
order approximation, an “average” derivative is sufficient
to characterize the model, again meaning that the model
is essentially linear.

2.2 Prediction Uncertainty from
a Global Perspective

Prediction uncertainty from a global perspective is different
from uncertainty from a local perspective. Globally, the
probability distribution of the predictiony contains all
information about uncertainty without reference to input
values. The distribution function can be estimated from a
simple random sample of model runs. However, LHS is
often a preferred alternative to simple random sampling
(see McKay, Conover, and Beckman, 1979, and Stein,
1987). For both sampling methods, sampling error is a
concern for small sample sizes.

Global uncertainty can arise from a local perspective by
way of the relationship betweeny andx, often assumed
linear and to hold over the entire input space. In this
case, the characterization of uncertainty is usually through
the variance of the prediction rather than through the
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whole probability distribution. How well the linearity
assumption holds determines how well global uncertainty
is characterized in this way.

2.3 Partitioning Prediction Uncertainty

Statements like “20% of the uncertainty iny is due
to x1” presupposes a quantitative measure and can be
very misleading, depending on how well the probability
distribution of y is summarized by the measure. An
example of a more precise statement is “On average, the
variance ofy is 20% less whenx1 is fixed than when it
is free; average is with respect to the distribution ofx1.”
Variance is the natural but by no means unique candidate
for a scalar measure of uncertainty.

Various methods address in one way or another the
issue of partitioning or decomposing variance among
inputs and subsets of inputs. Several studies compare
and evaluate methods currently used in the analysis of
computer models. Some of them are Saltelli, Andres, and
Homma (1993), Saltelli and Homma (1992), Saltelli and
Marivoet (1990), Iman and Helton (1988), and Downing,
Gardner, and Hoffman (1985).

2.3.1 Linear Propagation of Error

When variance ofy, V [y], is the measure of uncertainty,
the problem of partitioning uncertainty reduces to that of
finding suitable decompositions for the variance ofy. The
simplest of these is the usual propagation-of-error method
in which y is expressed as a Taylor series in the inputs
x about some pointx0. To first-order approximation, the
variance ofy is expressed as a linear combination of the
variances of the components ofx by choosingx0 to be
�x, the mean value ofx.

y(x) ' y(�x) +
X
i

@y(�x)

@xi
(xi � �xi

)

V [y] '
X
i

�
@y(�x)

@xi

�2
V [xi]

Derivatives might be determined numerically. Alterna-
tively, Oblow (1978) and Oblow, Pin, and Wright (1986)
use a technique whereby the capability of calculating
derivatives is added into the (Fortran) model calculation
using a precompiler called GRESS. When the derivatives
of y are estimated by the coefficients from a linear
regression ofy on x, there seems to be a stronger

assumption about the linear dependence ofy on x.
However, it is generally unknown whether the value of
the actual derivative ofy at x = �x or the value of an
average slope is preferred in the variance approximation.
In a technique that could be related to linear propagation
of error, Wong and Rabitz (1991) look at the principal
components of the partial derivative matrix.

Correlation coefficients have been used to indicate relative
importance of the inputs. They are mentioned here
because they are closely related to linear regression
coefficients. In a similar way, rank-transformed values
of y andx have been used for rank correlation and rank
regression by McKay, Conover, and Whiteman (1976)
and Iman, Helton, and Campbell (1981a, 1981b).

2.3.2 General Analytical Approximation

The natural extension of linear propagation of error, to
add more terms in the Taylor series, makes it difficult
to interpret variance decomposition component-wise for
x. That is, the introduction of cross-product terms brings
cross-moments into the variance approximation, which
makes the approximation no longer separable with respect
to the inputs. Nevertheless, higher-order terms in variance
approximation may be necessary because of an obvious
lack of fit from the linear approximation. The adequacy
of the approximation toy might be used as a guide to the
adequacy of the variance approximation.

Similarly, the linear approximation ofy used in the
regression can be generalized to an arbitrary analytical
approximation from which, in theory, the variance ofy can
be derived either mathematically or through simulation.
Alternatively, there is a method proposed by Sacks, Welch,
Mitchell, and Wynn (1989) which looks at the model as
a realization of a stochastic process. The difficulties in
interpretation and assessing adequacy just mentioned for
the higher-order Taylor series expansion apply here, too.

2.3.3 Sampling Methods

This final category of partitioning techniques relies on a
sample (usually, some type of random sample) of values
of y whose variability can be partitioned according to the
inputs without an apparent assumed functional relation
betweeny and x. In the category is a Fourier method
of Cukier, Levine, and Shuler (1978). Their procedure
samples values of each component ofx in a periodic
fashion, with different periods for each component. The
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variability (sum of squares) of the resulting values ofy is
written as a sum of terms corresponding to the different
periods and thus associated with the different components.
It is unclear how this relates to linear propagation of
error, but it may be just another way to estimate the
same quantities. The original Fourier method applies
to continuous inputs; it is extended to binary variables
by Pierce and Cukier (1981). Again, the relation to
linear propagation of error is unclear. Another procedure
suggested by Morris (1991) examines a probability
distribution of the partial derivatives of the output arising
from particular sampling designs.

Partition of variance in the multivariate analysis sense
is becoming more important as an analytical tool. A
most interesting partition of variance is presented by Cox
(1982) from Baybutt and Kurth (1978) and is similar to
a partition discussed by Karlin and Rinott (1982). It is
given in Appendix A.1. Though not actually a sampling
method, the elements of the decomposition are likely to be
estimated from sampled data. The identity used involves
the variances of conditional expectations of the output
given subsets of the inputs. Iman and Hora (1990) use
the expansion in its simplest form for a single input with
an explicit polynomial approximation to the conditional
mean. Saltelli, Andres, and Homma (1993) discuss a
more general situation which relates to Krzykacz (1990)
who uses the correlation ratio without an explicit form for
the conditional mean. These ideas are discussed in detail
in subsequent sections of this report. It is noted that, in
general, it is not possible to construct a unique variance
decomposition in which individual inputs are represented
by single terms, one for each input.

2.4 Cautions

There are three important points about the methods just
presented. First, uncertainty is only fully described by
a probability distribution. Thus, while variance is often
an effective characterization of the uncertainty, it can
contain very limited information when the distribution
is not symmetric with a long, heavy tail or when it is
multimodal. Moreover, variance rarely characterizes
the probability distribution uniquely. The second point,
closely connected to the first, is that many methods
identify individual inputs as important using variance
under a linear approximation model. There are very
few complete variance decompositions—for example, the
Cox decomposition—which do not rely on some form

of approximate relation betweeny andx. In particular,
when linearity assumptions are invalid, ordinarily powerful
methods based on them can break down. The final caution,
which applies to all statistical procedures, concerns the part
sampling variation plays in estimation. Different samples
can produce very different estimates for the methods
described. Thus, some type of independent validation
of conclusions is prudent. The methods presented
subsequently in this report address these cautions:
differences in appropriate probability distributions are
examined; methods apply to nonlinear models with
only very weak assumptions; validation is employed for
confirmation of conclusions.

2.5 Model Testing

Model testing is a term applied to a variety of procedures
intended to evaluate and build credibility in a model’s
predictions. Although model testing logically precedes a
final uncertainty study to evaluate prediction uncertainty,
several aspects of it can be combined efficiently with a
preliminary uncertainty analysis.

There are several main parts of model testing for any
specific modeling application. It is expected that iteration
among them will be necessary to achieve a reliable model.
The parts are

• verification — determination of consistency between
implementation of the model in a computer code and
its conceptual or mathematical description

• calibration — determination of appropriate val-
ues of intrinsic model parameters that describe
phenomenology

• shakedown testing — examination of model
predictions for a wide range of input values

• validation — comparison between model predictions
and experimental or observational data

Model runs from a preliminary uncertainty study can be
used in conjunction with the last two points of shakedown
testing and validation. Simple visual displays of the data
generated for an uncertainty study can provide a wealth
of information because of the dispersion of input values
in LHS. (See, for example, Ford, Moore, and McKay,
1979, and McKay, 1988.) In any event, a fully tested and
validated model is necessary before prediction uncertainty
due to input uncertainty can be evaluated sensibly.
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3 MODELING UNCERTAINTY

Modeling uncertainty refers to the variability in model
predictions due to plausible alternative input values
(input uncertainty) and plausible alternative model
structures (structural uncertainty). In this section, simple
characterizations for input and structural uncertainty are
proposed which allow formal description of uncertainty
by probability distributions. It is pointed out that while
structural and input uncertainty look very similar formally,
structural uncertainty is fundamentally more difficult to
evaluate in practice.

Modeling Uncertainty refers to the variability in model
predictions due to plausible alternative input values
(input uncertainty) or to plausible alternative model
structures (structural uncertainty).

Following McKay (1993), models are mathematical
abstractions, in the form of computer codes, used to
predict outcomes of real events. One way to picture
how outcomes arise in reality is depicted in Figure 3.1.
Hypothetical descriptor variablesd determine an outcome
� by their value and a ruleR. The existence of descriptor
variables is hypothetical; it is not critical to assume
that a finite number of such variables actually exist and
absolutely determine�. The outcome� might be a simple
scalar or a vector, possibly of infinite dimension, discrete
or continuous. It might be only partially observable
or observable with error. The outcome� might be a
stochastic process governed by some components ofd and
specified byR. The ruleR is unknown; formally, it maps
descriptor variablesd into outcomes�.

R: d
D

Conceptual descriptor variables Outcomes - target, truth

d

θ

θ

d : conceptual descriptor variables,d 2 D

R(�) : reality’s rule or “law”

� = R(d) : target, outcome in reality

Figure 3.1 View of reality

The modeling process mirrors reality with input variables,
structural form, and values of inputs by which the model

V

x

M

m

y

m: x

x: m

y

y

Input
values

Model
structures

Output calculation -
          prediction

x : model inputs,x 2 V

m(�) : model structure, rule, algorithm, etc.

y = m(x) : model output calculation, prediction

Figure 3.2 Model of reality

output prediction is calculated. The modeling process is
depicted in Figure 3.2.

Model predictions are often built upon idealizations and
simplifications. They are calculated from presumed values
for inputs with postulated relationships. In the upper part
of Figure 3.2, a modelm(�) fromM is a map of the model
input spaceV into the model prediction space. Model
input spaceV and that of conceptual descriptors,D, need
not coincide, as is the case, for example, when all relevant
factors have not been identified. Specification of factors
as model inputs is considered part of the model structure.
In Figure 3.1, there is only one map,R, which is reality’s
unknown rule. Because of structural uncertainty, the
possibility of alternative model structures is allowed in
the spaceM of model structures. Looking at the situation
from another angle in the lower part of Figure 3.2, a
point x in the input space maps the space of modelsM

into the prediction space. That is, for a specification of
a situation throughx, a range of possible predictions is
spanned by varyingm(�).

The term “model” is often used as if referring to a
family of functions. Thus, a function might be thought
of as a specific instance of a model.
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Basic modeling elements are

x : inputs,x 2 V

m(�) : structure, rule, algorithm, etc.

y = m(x) : output calculation, prediction

� : target of prediction

The model outputy is a prediction of an unknown outcome
� and depends on both inputsx and model structurem(�).
The prediction error for a simple, scalar prediction is the
differencey � �. The two sources of prediction error
are input values and model structure. These sources of
error, or uncertainty, can be characterized formally in a
probabilistic sense. Before doing so, however, an analogy
is drawn from statistical analysis.

For fixed model structurem(�), prediction errory � �

follows from input uncertainty and comprises a component
of precision (variance) and one of accuracy (bias) wheny

is treated as a random variable due to input uncertainty.
The usual mean square error of prediction is

E
h
(y � �)2

i
= E

h
(y � �y)

2

i
+ (�y � �)2

= V [y] + (�y � �)2 ; (3–1)

where�y = E[y] is the mean value ofy. The first term of
the right-hand side of Equation 3–1 is the variance ofy;
it is a measure of prediction uncertainty calledprediction
variance. The second term on the right (bias squared)
involves� and, usually, cannot be evaluated. It measures
the closeness of the average model prediction,�y, to � and
is a measure of accuracy. In any particular application,
the expectation is with regard to input uncertainty for
a fixed model.

There are really two fundamental sources of uncertainty
in model prediction and the modeling process: (1)
model structure—which identifies specific input variables
and relationships among them—and (2) values of the
inputs that specifically define modeled events. It may
be important but impossible to consider both sources
of uncertainty for a complete description of prediction
uncertainty.

3.1 Input Uncertainty

Historically, model analysis has dealt almost exclusively
with the input uncertainty component of modeling

uncertainty. Input uncertainty refers to plausible
alternative input values, as described in Figure 3.3.
Corresponding prediction uncertainty, which depends
on the modelm(�), is indicated by the shaded area of
variation in the prediction space associated with the
shaded area of variation around in the input spaceV. No
implications about the map, like continuity, are intended
in the figure. By assumption, there is a probability
function on the input space, represented by the density
function fx, which is mapped tofy on the prediction
space. The probability distributionfx characterizes input
uncertainty. The modelm(�) can influence the choice of
fx. Therefore, the characterization of input uncertainty
is the triple (fx; V;m(�)).

V

x

M

m

y

m: x y

Input
values

Model
structures

Output calculation -
          prediction

m(�): model structure

V : space of plausible input values,x 2 V

fx: probability function onV

fy: probability function fory induced by(fx; V;m(�))

Figure 3.3 Characterization of prediction
uncertainty from input uncertainty

Input Uncertainty refers to plausible alternative input
values.

The evaluation of prediction uncertainty arising from
input uncertainty concerns the determination or estimation
of the range of variation ofy, the estimation of the
probability functionfy (or some of its moments), and
some kind of determination of the “contribution” of
various subsets of input variables tofy. The evaluation
of prediction uncertainty can be carried out using ordinary
simulation methods.
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3. Modeling Uncertainty

3.2 Structural Uncertainty

The description of structural uncertainty parallels that of
input uncertainty. Structural uncertainty refers to plausible
alternative model structures, as described in Figure 3.4.
The shaded area inM represents a “range” of alternative
models which, for fixed input valuex, induces the shaded
neighborhood in prediction space. As before, the figure
is not meant to suggest any particular properties, like
continuity. Formally, there is a probability distribution on
M represented by the density functiongm which induces
a probability distribution ony indicated by the density
gy. This density represents the prediction uncertainty
and depends onx. The characterization of structural
uncertainty is the triple(gm;M; x).

V

x

M

m

y

x: m y

Input
values

Model
structures

Output calculation -
          prediction

x: input value

M : space of plausible models,m 2M

gm: probability function onM

gy: probability function fory induced by(gm;M; x)

Figure 3.4 Characterization of prediction
uncertainty from structural uncertainty

Structural Uncertainty refers to plausible alternative
model structures.

The evaluation of prediction uncertainty arising from
structural uncertainty concerns the determination or
estimation of the range, or space, of variability ofy and
the estimation of the probability functiongy. At this
point the parallel between input uncertainty and structural
uncertainty breaks down because of the difficulty of
quantifying and sampling the space of models,M . A
situation that is workable, however, is one whereM
consists of (finitely many) identified structures. This case
is called one of competing models. It can be investigated
in obvious ways, some of which are suggested by the
discussion of submodel uncertainty in Section 10.

Another possibility involves representing models as
realizations of stochastic processes. It has been used by
Sacks, Welch, Mitchell, and Wynn (1989) and others
for the purpose of designing computer experiments.
Following their work,M would be a space of random
functions, a superpopulation, whose parameters might be
estimated from the model(s) at hand.

The formal definition ofgy as defining uncertainty in
y is of little value without a basis for the probability
distributiongm on the space of models. FindingM and
gm constitutes the fundamental problem of structural
uncertainty. For a decision-maker who must confront
a situation involving structural uncertainty, Bayesian
methods using subjective or degree-of-belief probability
distributions (e.g., Apostolakis, 1990 and 1993) are
available. However, application of Bayesian methods does
not remove the difficulties of constructing fundamental
probability distributions.
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4 PREDICTION UNCERTAINTY

Prediction uncertainty describes the variability in the
prediction y associated with input uncertainty. The
important aspect of variability associated with structural
uncertainty is not included because there are no general
practical methods for treating it. In this section,
fundamental ideas about uncertainty and importance
are discussed with respect to the prediction probability
distribution fy. The concept of importance is related to
differences among conditional probability distributions
and prediction distribution. In Section 5, the variance
of fy is investigated as a summary forfy to be used in
evaluation of prediction uncertainty. Ideas of importance
from conditional probability distributions carry over to
the use of variance.

Prediction Uncertainty refers to the variability iny
associated with input uncertainty and is characterized
by the prediction probability distributionfy . The
model structurem(�) is assumed known and fixed,
which is the usual case, and so the probability distri-
bution is conditioned onm(�).

4.1 Prediction Probability Distribution

The probability distribution of the predictiony is
represented by a probability density functionfy.
(For discretey, fy is the usual probability function.)
Conceptually, the densityfy derives from the input
uncertainty triple

(fx; V;m(�)) ;

where

x � fx for x 2 V

y = m(x) :

The density functionfx represents the probability
distribution of the inputsx conditioned on the model
m(�).

Theoretically, prediction uncertainty is completely
described byfy, the prediction probability distribution.
Figure 4.1 depicts a density functionfy describing the
probabilistic variability iny due to inputsx that vary over
V according tofx. Becausefy completely characterizes

uncertainty iny, it cannot be discarded in final evaluations.
However, in practical situations simple measures that are
easy to use are needed. This is particularly true for when
making model comparisons for different scenarios. Two
widely used options are entropy and variance. Entropy,
which plays a dominant role in information theory, is
defined by

H = �E(log(fy)) :

Although possibilities for using entropy in uncertainty
studies are very interesting, they are not yet well
developed. A limited discussion is presented in Appendix
A.2. The other option for summarizing uncertainty is the
variance offy. This measure, dominant in the field of
statistics, is investigated in Section 5.

y

Figure 4.1 Prediction probability
distribution fy when all inputs vary

4.2 Importance for Prediction
Uncertainty

Importance is a subjective and, hence, vague term.
Operational definitions related to derivatives and regression
coefficients, including partial correlation coefficients,
may not be appropriate when dealing with prediction
uncertainty. For studying prediction uncertainty, a
convenient notion of importance relates to the “degree of
dependence” between model predictiony and an input
or subset of inputs. In the limiting case wherey and an
input are statistically independent, it is easy to understand
that the input is not at all important: its value implies
nothing about the value ofy. At the other extreme, the
value of an input could determine absolutely the value
of y; that is, conditioned on the input, the value ofy is
fixed with probability 1. The input would be completely
important. Somewhere in between these two limits is
everything of practical interest.
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4. Prediction Uncertainty

For a general application model, the possibility that inputs
individually are not particularly important needs to be
considered. That is to say, no single input may have any
particular impact ony, but collectively, a large enough
subset of inputs will be important. Thus, the importance
of a subset of inputs might depend more on the size of the
subset than on its composition. Therefore, an important
premise taken here is that importance of an input subset
increases, or at least does not decrease, with the size
of the subset.

The importance of input subsets includes importance
of a single input. Let the inputsx be partitioned into
disjoint subsets.

x = Sx [ Sc

x

The importance of the subsetSx relates to the difference
betweenfy—the distribution ofy when all inputs
vary—and the family of conditional densities

�
fyjsx

	
indexed onsx and describing the variability ofy when the
subsetSx is fixed at different valuessx. As an example,
Figure 4.2 suggests howSx might reduce the variance in
y for one of the densities in

�
fyjsx

	
.

yy

Figure 4.2 Unconditional fy and conditional
fyjs

x

when some of the inputs are fixed

Figure 4.2 illustrates ideas of importance and local
uncertainty: when the subsetSx of inputs is fixed at the
value sx, it is the remaining inputs inSc

x
which cause

uncertainty iny. This local or conditional uncertainty
is described by the conditional probability distribution
fyjsx . The uncertainty is induced by the conditional input
distributionfsc

x
jsx , which takes into account the possibility

that the inputs may not be statistically independent. IfSx
and Sc

x
are independent, then

fsc
x
jsx = fsc

x

:

Prediction uncertainty is described in terms of local
uncertainty for any subset of inputsSx. That is, the
marginal (unconditional) density ofy can be written as
the average of conditional densities.

fy(y) =

Z
fyjsx(y j sx)fs

x
(sx)dsx (4–1)

The arguments of the density functions have been made
explicit. The equation clearly shows the relation between
fy and the densities in the family

�
fyjsx

	
. Intuitively, that

Sx is important means that the uncertainty iny changes
with the valuessx. That is to say, that the densities in
the family

�
fyjsx

	
differ in some substantial way among

themselves. On the other hand, thatSx is unimportant
means that the fixed valuesx has small effect ony, which
means that densities in the family

�
fyjsx

	
are very similar

among themselves. In the limiting case,Sx is completely
unimportantwheny andSx are statistically independent.
In this extreme case, the distribution ofy conditioned on
Sx is constant, namely,

fyjsx = fy for all sx :

Thus, a base line for comparing the family of densities�
fyjsx

	
is the densityfy. Equation 4–1 shows that when

the family
�
fyjs

x

	
are similar among themselves and

all approach a constant function, that constant function
is fy . Likewise, when they are more dissimilar among
themselves, they are dissimilar tofy. The validation
procedure discussed later in the report examines families
of densities

�
fyjs

x

	
and

�
fyjsc

x

	
and the densityfy .

Importance for Prediction Uncertainty refers to de-
gree of statistical dependence between input and pre-
diction and to differences within the family of condi-
tional probability distributions

�
fyjsx

	
. The average

value of the probability distributions in the family is
the prediction probability distributionfy.

4.3 Stochastic Variability

Prediction uncertainty relates to input uncertainty.
However, there is another common type of variability,
sometimes called stochastic uncertainty, which arises in
connection with some modeling methods. For a stochastic
model, the object of prediction is a random variable whose
“stochastic variability” in nature is modeled as a random
process. The behavior of the roll of dice or that of wind
speed and direction at a weather station are examples
of stochastic variability. Although reality and prediction
can be summarized with histograms, means, and standard
deviations, any particular output is random. Models of
random processes like these are called stochastic process
models or probabilistic models.

A complete and error-free specification of a stochastic
(probabilistic) model can only provide predictions that

NUREG/CR–6311 14



4. Prediction Uncertainty

are accurate in the statistical sense, for example, of being
able to predict average behavior. For situations involving
stochastic variability, it is convenient to view accuracy
of prediction as referring to accuracy of the probability
distribution from the model which describes the stochastic
behavior of the actual outcome. In order to obtain an
adequate estimate of the probability distribution of the
stochastic outcome, a stochastic model must be sampled

many times. When sampling error is significant with
respect to input uncertainty, both types of variability need
to be taken into account in an uncertainty analysis. In the
remainder of this report, it is assumed that the probability
distribution of stochastic outcome has been estimated,
essentially, without error. Other treatments of stochastic
models are left to further research efforts.
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5 PREDICTION VARIANCE AND IMPORTANCE INDICATORS

In this section, prediction variance is presented as a
simple measure of prediction uncertainty. The ideas are
fundamental to the evaluation of prediction uncertainty and
importance through prediction variance. In a development
that parallels the general notions of prediction uncertainty
importance previously discussed, variance is regarded as
an attribute of and proxy for the prediction distributionfy.

5.1 Prediction Variance

The mean value and variance of a probability distribution
are fundamental attributes commonly used as a proxy
for the full distribution, even though it is only in special
cases, like that of the normal distribution, that the mean
and variance uniquely identify the distribution. The mean
and variance often contain enough information to suffice
for analysis. Prediction mean and variance are given by

E(y) =

Z
yfy(y)dy = �y

and
V [y] = E(y � �y)

2

=

Z
(y � �y)

2
fy(y)dy :

Investigation of importance with respect to prediction
varianceV [y] follows.

5.2 Importance for Prediction Variance

For an arbitrary partition of the inputsx into disjoint
subsetsSx andSc

x
, the (prediction) variance ofy calculated

from the left and right sides of Equation 4–1 produces the
familiar result (see Parzen, 1962)

V [y] = V [E(y j Sx)] + E(V [y j Sx]) ; (5–1)

where

V [E(y j Sx)] =

Z �
�yjsx � �y

�2
fsx (sx)dsx

E(V [y j Sx]) =Z Z �
y � �yjs

x

�2
fyjs

x

(y)fsx(sx)dydsx

and

�yjsx = E(y j Sx) =

Z
yfyjsx (y)dy :

5.2.1 Variance of the Conditional
Expectation (VCE) of Prediction

The two terms on the right in Equation 5–1 have an
interpretation as to the importance of the input subset
Sx. The first of them is the variance of the conditional
expectation ofy, conditioned onSx. It is denoted by
VCE or

VCE(Sx) = V [E(y j Sx = sx)] : (5–2)

The second term is an error or residual term written as

Residual(Sc

x
;Sx) = E(V [y j Sx]) : (5–3)

Thus, the prediction variance is

V [y] = VCE(Sx) + Residual(Sc

x
;Sx) : (5–4)

The conditional expectation ofy, also denoted by�yjsx ,
is a function ofsx, the conditioning value of the inputs
in subsetSx. The VCE measures the variability in the
conditional expected value ofy as the inputs inSx take
on different valuessx. The residual term represents
the variability in y not accounted for (explained by) the
input subsetSx.

(In the notation for conditional expectation and variance,
the notations “j Sx” and “ j Sx = sx” are used
interchangeably to mean that the operation is conditioned
on the subsetSx having an arbitrary but fixed value
denoted by the lowercase symbolsx.)

An informal argument that the VCE is a suitable measure
for importance of the subsetSx follows. It looks at the
constituent parts in Equation 5–4 to reveal the way in
which they relate toSx and the rest of the inputsSc

x
.

• The total variability iny when all of the inputs vary
is measured by the prediction varianceV [y], the left
side of Equation 5–4.

• When an arbitrary subsetSx is fixed at sx, the
expected prediction is given by conditional expected
value of y, E(y j Sx = sx). It represents the
prediction atsx averaged over values of all of the
other inputsSc

x
. The importance ofSx relates to

how well Sx drives or controlsy, that is, how
well E(y j Sx = sx) mimics y. In particular, if the
total variability in y is matched by the variability
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5. Prediction Variance and Importance Indicators

in E(y j Sx = sx) as sx varies, thenSx would be
a very important input subset. That variability is
measured byV [E(y j Sx = sx)], which is the VCE
and the first term on the right in Equation 5–4.

• WhenSx is fixed at the valuesx, the remaining or
residual variability iny is due to all of the other
inputs—Sx is fixed andSc

x varies. The residual
variability is the variability not controlled bySx. It is
measured by the conditional varianceV [y j Sx = sx].
The quantity is a measure of local variability at
sx due toSc

x, and is averaged oversx to yield its
averageE(V [y j Sx = sx]), which is the second term
on the right in Equation 5–4.

Equations 5–1 and 5–4 hold for continuous and discrete
prediction variablesy. They also hold when the subsets
Sx and Sc

x are statistically dependent. When inputs
are dependent, a large VCE forSx might be more due
to the conditional distribution ofSc

x changing withsx
than with the computational effect ofSx being fixed.
This consideration points out the need to understand
“importance” as it relates to the degree of statistical
dependence of inputs and prediction.

In summary, the VCE is an intuitively appealing choice of
an importance indicator. Equations 5–1 and 5–4 show that
for any arbitrary subset of inputs, prediction variance can
be written as the sum of a global component (VCE) and
a local component (residual), from which thecorrelation
ratio, discussed below, arises as a natural indicator of
importance. No assumptions are made about the form of
the relationship betweeny andx, as is the case for usual
analysis of variance models and other regression models.
However, convenient variance partitions which result
from linear (approximation) models are not available. In
Section 6, discussion of estimation procedures shows the
relationship between the variance components used with
importance indicators and traditional analysis of variance
for random effects models.

5.2.2 Correlation Ratio

The constituents of the variance decomposition of Equation
5–4 are the VCE and the residual part due to the remaining
inputsSc

x. The magnitude of VCE relative to prediction
variance in Equation 5–5 is called the correlation ratio by
Kendall and Stuart (1979).

�2 = V [E(y j Sx)]=V [y]

= VCE(Sx)=V [y] (5–5)

They explain its use in describing nonlinear relationships
as a parallel to that of the usual correlation coefficient
� for linear relationships. A disincentive to its use in
the past may have been the sample size required for
adequate estimation of the VCE. The author had used an
approximate estimator from LHS in early research efforts,
but abandoned it due to imprecision in estimation. The
same method is described by Krzykacz (1990) where
the estimate is called the “empirical correlation ratio.”
Iman and Hora (1990) used(V [E(y j xj)])

1=2 for single
inputsSx = xj in analysis of fault trees assuming a linear
polynomial approximation for the conditional expectation
of y. In Section 6, a new sampling plan for estimating
correlation ratios is presented.

5.2.3 Partial VCE (PVCE)

The VCE and correlation ratio can be used as indication
of importance of any specified subsets of inputs, including
each input alone. It might be thought that to determine
the composition of the important subsetSx, all that would
be needed would be to assess each input separately using
the VCE. Such a one-at-a-time approach, however, is not
recommended because it is not necessarily an optimal or
even good subset selection procedure. If, forp inputs in
Sx, there were a unique partition of the VCE of the form

VCE = v1 + v2 + � � �+ vp ;

where thevi are nonnegative and correspond only to input
numberi, then selection of important input subsets would
depend only on the relative sizes of thevi. Unfortunately,
there is no such unique partition, meaning that the relative
importance of inputs is not well defined. This situation is
similar to that in linear regression analysis where there is
no unique partition of regression sums of squares—except
when thex-values are orthogonal. Therefore, it is
necessary to look further for a procedure for selection of
subsets of important inputs.

In regression analysis, partial regression coefficients and
partial sums of squares are used to select regression
models. A similar procedure can be used for selecting
important subsets of inputs in a model-free situation using
variance components and the VCE. However, just as in
regression, the order of variable selection will be seen
to be material. The remainder of this section describes
the procedure.

The heuristic sequential approach to assessing importance
of inputs, finds “best” subsets ofj inputs for j = 1; 2;3
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and so forth up to the smallest value for which all
of the prediction variance is essentially accounted for.
Proceeding sequentially, the subsetSx is augmented by
one input variable, although it also can be (and, in practice,
often is) augmented by a subset. The resulting VCE with
an additional input is related to the initial VCE(Sx).

The VCE for the augmented subset

S�

x
= fx�; Sxg ;

derived in Appendix A.3, is the sum of the VCE forSx
and an additional term forx�. The new VCE is

VCE(S�

x
) = V [E(y j S�

x
)]

= VCE(Sx) + E(V [E(y j S�

x
) j Sx]) : (5–6)

The additional term is found by applying Equation 5–1
to the subsetfx�g for each fixed value (at each site)
of Sx = sx. At each site, the prediction variance is
conditioned onSx and given by

V [y j Sx] = V [E(y j S�

x
) j Sx]

+E(V [y j S�

x
] j Sx) : (5–7)

Equation 5–7 parallels Equation 5–1 at each siteSx = sx
and shows how importance of the additional inputx�

beyond that of the subset of inputsSx is evaluated
locally with the conditional VCE as a function ofsx.
A global measure is obtained by taking expectation
(averaging) Equation 5–7 overSx, from which the last
term corresponding tox� in Equation 5–6 can be derived.
The expectation of Equation 5–7 with respect toSx is

E(V [y j Sx]) = E(V [E(y j fSx; x
�g) j Sx])

+E(E(V [y j fSx; x
�g] j Sx)) ; (5–8)

which shows that Equation 5–1 can be written as

V [y] =V [E(y j Sx)]

+ E(V [E(y j fx�; Sxg) j Sx])

+ E(E(V [y j fx�; Sxg] j Sx)) ; (5–9)

where the residual variance term is replaced by a term
representing the additional variable (subset)x� and a new

residual term. The term forx� is called the partial VCE
or PVCE forx� adjusted forSx, and is given by

PVCE(x�;Sx) = E(V [E(y j fx�; Sxg) j Sx]) : (5–10)

In terms of the VCE and the PVCE, the prediction
variance in Equation 5–9 is

V [y] = VCE(Sx) + PVCE(x�;Sx)

+ Residual(S�c

x
;S�

x
) ; (5–11)

where

VCE(fx�; Sxg) = VCE(Sx) + PVCE(x�;Sx) :

The representation forms the basis for the sequential
construction of important subsets because the VCE for
fx; Sxg is as least as large as the VCE forSx alone. That
is, for two input subsetsS andS�,

S � S� ! VCE(S) � VCE(S�) :

This property is allows VCE to be used to construct subsets
of important inputs sequentially, in a nested fashion.

5.2.4 Partial and Incremental
Partial Correlation Ratios

The PVCE forx� measures the amount of residual
variance not explained bySx that can be attributed to the
additional inputx�. Relating the PVCE to the residual
variance in Equations 5–1 and 5–3, yields the partial
correlation ratio

�2
p
= E(V [E(y j fSx; x

�g) j Sx])=E(V [y j Sx])

= PVCE(x�;Sx)=Residual(Sc

x
;Sx) : (5–12)

This ratio is an indicator of the (average) importance of
x� whenSx is fixed. If the PVCE is compared with the
full prediction variance, the incremental partial correlation
ratio is formed as

�2inc = E(V [E(y j fSx; x
�g) j Sx])=V [y]

= PVCE(x�;Sx)=V [y] ; (5–13)

which measures the importance of thex� beyond (or
adjusted for) that of the subsetSx.
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The difference between VCE(x�) and PVCE(x�;Sx)
underlies the reason that the order is material in variable
selection for identification of important inputs. This
phenomenon means that the importance of an input by
itself may be—and often is—different from its importance
in concert with other inputs. Not only is it reasonable
that this should be the case, but the phenomenon can be
exploited when finding minimum-size or minimum-cost
subsets to reduce prediction uncertainty.

5.2.5 Conditional Correlation Ratio

At each siteSx = sx, prediction variance, VCE, and
correlation can be computed for inputsnot in the subset
Sx. These quantities are called conditional, conditioned
on Sx = sx, and defined from Equations 5–7 and 5–5 in
the obvious manner. Conditional VCE and conditional�2

are local indicators of importance.

5.3 Conditional Moments
and Model Testing

The moments in Equation 5–1 are integrals with respect
to y which can be written also in the form

E(y) = �y

=

Z
yfy(y)dy

=

Z
y(x)fx(x)dx

and
E(y j Sx = sx) = �yjsx

=

Z
yfyjsx (y)dy

=

Z
y(x)fsc

x
jsx(s

c
x)ds

c
x

as integrals over the input space. The integrals suggest
that estimators of the conditional mean

E(y j Sx = sx)

and the conditional variance

V [y j Sx = sx]

be used as diagnostic aids in model testing for evaluating
input subsets along with their being components of
importance indicators. Although plots ofE(y j Sx = sx)
can be very informative in revealing the effect ofSx, their

interpretation should be weighted by the distributionfsx of
Sx. In ordinary regression, for example,E(y j Sx = sx)
is modeled as a function ofsx, and the importance of
Sx is evaluated. Often, however, in ordinary regression
analysis, the points are equally weighted. In the present
situation, this corresponds to inputs having independent
uniform probability distributions. The weighting is seen
in the calculation of the (global) expected value ofy as

E(y) =

Z
E(y(x) j Sx = sx)fsx (sx)dsx ; (5–14)

which is the weighted average of the (local) conditional
expectations.

The conditional variance ofy

V [y j sx] =

Z �
y(x)� �yjsx(x)

�2
fsc

x
jsx(s

c
x)ds

c
x

can be used in a similar way as a diagnostic aid in
model testing.

5.4 Beyond Regression Methods

Variance-based methods for assessing importance can be
seen to be generalizations of regression-based methods by
virtue of the treatment of the conditional expectation ofy

as a function of the conditioning variablex. Regression
methods use an assumed form of the relationship, often
linear. Variance methods operate without any such
assumption. For example, in linear regression the
conditional expectation ofy is assumed to be a linear
function of x, which can be written as

E(y j x) = x�

for a row vectorx and column vector�. Under the
linearity assumption, the VCE is given by

VCE(x) = V [E(y j x)] = �tV [x]� ;

for which the unknown parameters� are estimated from
the sample data. For variance-based methods, the VCE is
estimated from sample data without regard to any specific
relationship for the conditional expectation. In this sense,
variance methods are model-free or nonparametric.

Estimation related to the VCE is directed to two
components: estimation of the conditional expectation
and estimation of its variance. With a linear regression
approach, the entire estimation problem reduces to the
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ordinary regression analysis problem of estimation of
the vector of parameters�. For a variance approach,
the conditional expectation is an unspecified function of
x. Therefore its estimation at each value ofx and the
subsequent estimation of its variance rely on sampling
theory. Estimation for linear regression is well understood
and requires a minimum number of computer runs,

depending on the number of inputs and the complexity
of the linear model. On the other hand, estimation for
general variance methods requires many more computer
runs. Therefore, variance approaches have been used in
very limited situations in the past. Modern computing has
opened the door to variance methods.
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6 ESTIMATION FOR IMPORTANCE INDICATORS

This section discusses methods for estimating the variance
components related to the VCE. Estimates are of the
sums-of-squares variety from analysis of variance.
Sampling plans are based on LHS. To more easily present
fundamental ideas and more clearly present procedures
used in analyses, estimation is discussed for three cases:

• Sx = fxig, individual inputs

• Sx = fxi; Sg, augmentation by individual inputs

• Sx an arbitrary subset of sizes > 1

The first case occurs at the beginning of an uncertainty
analysis when the objective is to assess the importance of
each individual input with respect to prediction variance.
A single sample ofy-values based on LHS is used
to estimate prediction variance and the VCE for each
input variable. The second case is encountered when
sequentially constructing and assessing importance of
subsetsSx. The case examines a method for estimating
the PVCE, the increment to the VCE from the addition of
inputsxi to a previously selected subsetS. As in the first
case, the same sample ofy-values is used for each input
variable. The final case arises in evaluation of an arbitrary
subset of inputs. It is a simple extension of the first case
with the subset treated as a single input variable.

The estimators are sums of squares and arise in a natural
manner from familiar analysis of variance formulas, as
illustrated in Appendices A.4, A.5, and A.6.. Their
properties come from simple random sampling and
carry over, through approximation, to LHS. Estimators
corresponding to different subsetsSx are not required
to be independent, and it is unlikely that they are. It is
emphasized that there is no assumption thaty = m(x) is
a linear function of the inputsx.

6.1 Basic Sampling Plan:
Replicated LHS

Variance components are estimated from a design called
a replicated LHS (rLHS). Each replicate in an rLHS
corresponds to independent randomizations of the set of
values of each input. An rLHS is not a replicated LHS
plan in the usual sense that replicates are independent
and identically distributed samples. However, even in an
LHS, the individual sample values are not independent
and identically distributed samples.

The properties of an rLHS based on an LHS of sizen are
conditioned on then particular values of each input. In an
LHS, values are sampled from intervals, a procedure that
allows certain estimators to be unbiased. A disadvantage
of the procedure is that some samples will contain extreme
values (in the tails of the distribution) that cause sample
estimates to be unusually far from the true value. As a
compromise, probability midpoint or median values from
each interval are used instead of sampled values. This
change is equivalent to changing the input space from
continuous to discrete. From a practical point of view,
the change is not likely to be material. Theoretically, for
a large enough number of intervals and suitably smooth
modelsm(�), the use of probability midpoints is also
immaterial and might even produce better estimators in
a mean-square-error sense.

6.1.1 Base Case Sample

An LHS of sizen for I inputs is denoted by the matrix

D0 = [X1; X2; � � � ; XI ]

of dimensionn rows� I columns. Each column vector
Xi = (xi1; xi2; � � � ; xin)

t containsn valuesxij sampled
from equal-probability intervals and randomized as to
position in the vector. Although not crucial to the design,
probability midpoints of the intervals rather than sampled
values are used.

An rLHS-n is r replicates of the LHS obtained as
independent permutations of all of the columns ofD0.
Replicatek and the full designD are denoted by

Dk =
heX1;k; eX2;k; � � � ; eXI;k

i
; k = 1;2; � � � ; r

D =

2
664
D1

D2

...
Dr

3
775 ; (6–1)

where eXi;k is an independent permutation of the rows
of Xi. The full design matrixD is an (r�n) row �
I column matrix. The construction points out that the
samen values for each input appear in each of ther
replicate design matrices and that the replicate design
matrices differ in the input combinations designated by
the rows of the matrices.
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6.1.2 Dependent Inputs

The situation is certainly simpler when inputs are
independent. Because of this, inputs are sometimes
treated as independent when it is more appropriate to treat
them as dependent. Alternatively, dependence among
inputs can be approximated by inducing sample correlation
structure through a permutation process, such as described
by Iman and Conover (1982), or by a procedure due
to Stein (1987). Finally, when a proper treatment is
required—as when the ranges of inputs depend on each
other—sample values are selected according to their joint
probability distribution. This action can be accomplished
in two ways, depending on the specific situation. If, for
example,x1 andx2 are not independent and have joint
density functionf12(x1; x2) = f1(x1) � f2j1(x2 j x1), then
one method is to sample directly fromf12, and the other
method is to sample first from the marginal densityf1 and
then from the conditional densityf2j1. For best estimation
of fy, the proper distribution ofx1 andx2 should be used.
However, for determining important inputs, approximate
sampling methods can be used during screening followed
by a proper sampling method for validation.

6.2 Estimation for Individual Inputs

Estimation for assessing importance of individual inputs
is a fundamental component of uncertainty analysis. This
section discusses sample design, formulation of estimators,
and critical values. The general principles used readily
extend to the augmentation and arbitrary subset cases
presented subsequently.

6.2.1 Sample Design

Estimation of variance components for all of the individual
inputs can be accomplished using a single rLHS of size
n with r replicates. The full sample requiresN = n � r

model runs and predictionsy. (As mentioned in the
introduction to this section, it is neither required nor likely
that the estimates are independent.) The design matrix
D for r replicates in an rLHS-n is given in Equation
6–1. The associated model predictionsy are fyjkg for
j = 1; � � � ; n andk = 1; � � � ; r.

6.2.2 Prediction Variance Estimate

Each of ther replicates of an LHS yields an estimate
of the variance of the predictiony from each replicate

sample (total) sum of squares as

bVk[y] = 1

n

nX
j=1

(yjk � y�k)
2

y�k =
1

n

nX
j=1

yjk :

Then-divided sum of squares is preferred to the(n� 1)-
divided one with LHS. For simple random sampling, the
(n� 1)-divided sum produces unbiased estimators. The
familiar analysis of variance relationship for sums of
squares between replicates and within replicates is

rX
k=1

nX
j=1

(yjk � y)2 =
rX

k=1

nX
j=1

(y�k � y)2

+
rX

k=1

nX
j=1

(yjk � y�k)
2
;

where

y =
1

r

rX
k=1

y�k :

It shows that the pooled variance estimator is

bVp[y] = 1

r

rX
k=1

bVk[y]

=
1

nr

rX
k=1

nX
j=1

(yjk � y�k)
2

=
1

nr

rX
k=1

nX
j=1

(yjk � y)2 �
1

r

rX
k=1

(y�k � y)2 :

The pooled estimator is only close to unbiased—note
the divisors in the sums of squares—for simple random
samples of sizenr. However, it is even less biased for
LHS. For LHS, the last term involving the replicate means
is expected to be small, so the estimator used for variance
of y is the simpler form

bV [y] =
1

nr

nX
j=1

rX
k=1

(yjk � y)2 : (6–2)

NUREG/CR–6311 24



6. Estimation of Importance Indicators

6.2.3 VCE Estimate

The VCE forxi given by Equation 5–2 is

VCE(xi) = V [E(y j xi)] :

It is estimated separately for each input. Without loss of
generality, the predictionsy are assumed to be labeled so
that fyjk; k = 1; � � � ; rg corresponds toxij. Estimation
of the VCE is viewed in two parts: one concerning the
expected value (E) and the other concerning the variance
(V). The estimator in the expectation part is the sample
average ofy-values for whichxi = xij:

yj =
1

r

rX
k=1

yjk :

For simple random sampling and, approximately, for LHS,

E
�
yj
�
= E(y j xij)

as desired. The expected value part of the estimation is
based onr valuesyjk.

The complete construction in the variance part begins with
the sum of squares whose expectation, from Appendix
A.4, is

E

0
@ 1

n

nX
j=1

�
yj � y

�2
1
A ' V [E(y j xi)] +

1

r
E(V [y j xi]) :

Therefore, the VCE forxi can be estimated with

dVCE(xi) =
1

n

nX
j=1

�
yj � y

�2

�
1

nr2

nX
j=1

rX
k=1

�
yjk � yj

�2
: (6–3)

The variance part of the estimation is based onn values
of the meanyj .

6.2.4 Correlation Ratio Estimate

The correlation ratio is estimated by a ratio of estimators in

b�2 = R2

a = dVCE(xi)=bV [y] ; (6–4)

which, in terms of Equations 6–2 and 6–3, is

R2

a(xi) =

8<
:

1

n

nX
j=1

�
yj � y

�2
�

1

nr2

nX
j=1

rX
k=1

�
yij � yj

�2
9=
;

=

8<
:

1

nr

nX
j=1

rX
k=1

(yij � y)2

9=
;

=

8<
:r

nX
j=1

�
yj � y

�2
�

1

r

nX
j=1

rX
k=1

�
yij � yj

�2
9=
;

=

8<
:

nX
j=1

rX
k=1

(yij � y)2

9=
; : (6–5)

These equations are made up of the sums of squares
from a one-way analysis of variance. How they relate the
VCE and residual variance components with analysis of
variance is shown in Appendix A.5.

Importantly, while analysis of variance ordinarily applies
with a linear model, the estimators of prediction variance
and VCE used inR2

a do not depend upon any such model.
Estimates of the correlation ratio and partial correlation
ratio show how analysis of variance formulas relate to
estimation of variances used for importance indicators.
In fact, the quantity

R2 =

8<
:r

nX
j=1

�
yj � y

�2
9=
;=

8<
:

nX
j=1

rX
k=1

(yij � y)2

9=
; (6–6)

from a linear (analysis of variance) model is related to
R2

a through

R2

a = R2 �
1

r

�
1� R2

�
: (6–7)

Derivation of critical values forR2 andR2

a follows.

6.2.5 Critical Values

Critical values forR2 andR2

a are derived under the null
hypothesis for a random-effects model thatyij aren �
r independent and identically distributed normal random
variables partitioned at random inton groups of size
r. The null hypothesis implies that the labelingyjk of
y-values according to the valuesxij constitutes a random
partition—thaty is independent ofxi. The additional
assumption of (approximate) normality is common and
needed forR2 to have a beta distribution. The beta
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distribution is related to the F distribution through the
transformation

R2 =
1

1 + (�2=�1)F(�2; �1)
; (6–8)

where
�1 = n� 1

�2 = n � (r � 1) :

The expected value ofR2 under the null hypothesis is

E
�
R2
�
=

n� 1

n � r � 1

'
1

r
; (6–9)

which shows how large, and small,R2 is expected to be
as a function of the number of replicatesr. Equation 6–7
is used to transform values fromR2 to R2

a.

6.2.6 Notes on Approximations

The expectation results are derived from a simple random
sample of observationsyij. Additionally, the beta
distribution ofR2 derives from theyij having a normal
distribution. Therefore, the results are approximate
for an LHS and foryij which are rank transformed.
Nevertheless, the critical values and mean value forR2

provide convenient practical guidelines for analysis.

6.3 Estimation for Augmentation
by Individual Inputs

Augmentation describes a situation very much like the
one treating individual inputs, except that importance
of inputs is assessed over and above the importance of
a previously chosen subset of inputs. For a previously
chosen subsetSx, the objective through augmentation is
to estimate the VCE for subsetsfx; Sxg which include an
additional input. The strategy is to use the relationship,
from Equation 5–11,

VCE(fxi; Sxg) = VCE(Sx) + PVCE(xi;Sx) : (6–10)

The PVCE is estimated as the average of the (conditional)
VCE estimates over a sample of values (sites) ofSx.

6.3.1 Sample Design

The subsetSx is a subset of inputs. Let

v = fv1; v2; � � � ; vsg

denotes sites forSx, meanings vectors that give the
values for the inputs inSx. The design matrix at site
t is denoted by

Dt = vt 
D(Sx) ; (6–11)

meaning that the columns ofD in Equation 6–1
corresponding to the inputs inSx are replaced by
the fixed values invt. The values of the inputsSx are
constant and equal to the valuesvt at sitet. Finally, the
sites are selected by LHS.

It is allowed that only one site ofSx be sampled. This
situation is equivalent to setting the inputs inSx to their
median values in the base case sample and doing the
analyses for individual inputs.

6.3.2 Conditional VCE and PVCE Estimates

At each sitet, the base case design matrix is used for all
inputs except those inSx, which have fixed values at each
site. The VCEs at sitet, calculated with the predictions
fytjkg, are conditioned on the valuevt of Sx and called
conditional VCEs. When averaged over all sitest, they
become the PVCE for each input. Applying Equation 6–3
at each site gives the conditional VCE estimate as

dVCE(xi j Sx = vt) =
1

n

nX
j=1

�
ytj � yt

�2

�
1

nr2

nX
j=1

rX
k=1

�
ytjk � ytj

�2
: (6–12)

When averaged over (equally probable) sites, the PVCE
is obtained as

dPVCE(xi;Sx) =
1

sn

sX
t=1

nX
j=1

�
ytj � yt

�2

�
1

snr2

sX
t=1

nX
j=1

rX
k=1

�
ytjk � ytj

�2
: (6–13)
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6.3.3 Partial and Incremental Partial
Correlation Ratios Estimates

The estimate of the partial correlation ratio is formed
as the ratio

b�2p = dPVCE(xi;Sx)

=

8<
:

1

snr2

sX
t=1

nX
j=1

rX
k=1

�
ytjk � ytj

�2
9=
;: (6–14)

The denominator is the estimate of the residual prediction
variance adjusted forxi andSx. The estimated incremental
partial correlation ratio, based on the prediction variance,
is given by

b�2inc = dPVCE(xi;Sx)=bV [y] ; (6–15)

where the prediction variance estimator is Equation 6–2.
That estimator of prediction variance is preferred to one
from the sample used to estimate the PVCE when the
number of sites is small and particularly whens = 1.

6.3.4 Conditional Correlation Ratio Estimate

At each sitet, the conditional VCE and correlation ratio
can be used as local importance indicators. Local in this
sense refers to the fixed value of the inputs inSx. The
conditionalR2

a estimate is given by

CR2
a =

8<
:r

nX
j=1

�
ytj � yt

�2
�

1

r

nX
j=1

rX
k=1

�
ytjk � ytj

�2
9=
;

=

8<
:

nX
j=1

rX
k=1

(ytjk � yt)
2

9=
; ; (6–16)

which is Equation 6–5 applied to sitet. The average
conditionalR2

a, weighted by the estimate of the prediction
variance at site, is the estimate of the incremental partial
correlation ratio.

6.4 Estimation for Arbitrary
Subsets of Inputs

Methods for analysis of an arbitrary single inputx readily
generalize to methods for an arbitrary subsetSx. With the
inputs partitioned into two disjoint subsetsSx andSc

x, the

objective of analysis is the importance ofSx. An LHS for
Sx is combined with an LHS forSc

x to allow estimation
relative to the entire subsetSx and, possibly,Sc

x. If a
replicated LHS is used forSc

x, importance of its input
components can be assessed as described in the Section 5.

6.4.1 Sample Design

The sample design for estimating variance components for
subsetsSx of arbitrary size is essentially the one in the
Section 6.2 withSx playing the role ofx andSc

x playing
the role ofSx. The number of sitess is the sample size
for Sx and can be approximately the same as the number
of intervalsn used for individual inputs. The sample size
for Sc

x is alson, and onlyr = 1 replicate is required. The
sample design at sitet is given by Equation 6–11, where
vt represents the values of the inputs inSx at the site and
D(Sx) represents the sample on the inputsSc

x, the same
sample values of which are used at each site.

6.4.2 VCE and Correlation Ratio Estimates

The VCE forSx is estimated as in Equation 6–3 for an
individual input by

dVCE(Sx) =
1

s

sX
t=1

(yt � y)2 �
1

sn2

sX
t=1

nX
j=1

(ytj � yt)
2
;

whereyt is the sample average at sitet. The correlation
ratio is estimated as in Equation 6–5 as

R2
a(Sx) =

8<
:n

sX
t=1

(yt � y)2 �
1

n

sX
t=1

nX
j=1

(ytj � yt)
2

9=
;

=

8<
:

sX
t=1

nX
j=1

(ytj � y)2

9=
; :

The symmetry of the sample design supports estimation
of the VCE forSc

x if it is statistically independent ofSx.
In that case, the VCE forSc

x is given by

dVCE(Sc
x) =

1

n

nX
j=1

�
y:j � y

�2
�

1

ns2

nX
j=1

sX
t=1

�
ytj � y:j

�2
;

wherey:j is the sample average at sitej for the inputs
in Sc

x. The reason the VCE forSc
x cannot be estimated

if Sx andSc
x are not statistically independent is that the

distribution ofSc
x given Sx may be different at different

sites.
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6.5 Regression Interpretations

Relationships between variance components, conditional
expectations, and a general linear regression model can be
seen by way on the example shown in Figure 6.1. In the
figure, the prediction data from an rLHS are plotted against
an individual input. AllN = n � r values are plotted
on they-axis and again above thex-values to which they
correspond. There aren groups of data corresponding to
the n distinct values ofx andn parameters in a general
linear model. Within each group there arer y-values
corresponding to ther replicates of the LHS. TheN values
on they-axis yield the total sum of squares (SST) and
correspond to the prediction varianceV [y]. These values
are partitioned inton groups withn mean values (not
indicated in the figure). The group means,y

1
; y

2
; � � � ; yn

correspond ton conditional expectations, as a function
of x, and ton parameter estimates in the linear model.
The means yield the between-group sum of squares
(SSB) which corresponds to the VCE. From a regression
perspective, the group means are the predicted values
whose sum of squares is the regression sum of squares.
The r values within each group correspond to regression
residuals when compared with the group mean. The sums
of squares about the group means form within-group sum
of squares (SSW) corresponding to the residual variance
component. The more important the input is, the larger is
the between-group variability reflected in larger variability
of group means and, at the same time, smaller residual
or within-group variability. The residual or within-group
variability is due to all of the other inputs. The multiple
correlation coefficientR2 = SSB=SST is a measure of
the goodness of fit of the regression and corresponds to
the correlation ratio�2 = VCE(x)=V [y].

6.6 Summary of Formulas
for Estimation

The N = n � r observationsfyjk; j = 1; � � � ; n and
k = 1; � � � ; rg are from an LHS of sizen replicatedr
times. They are labeled onj to correspond to then
distinct values of an input, say,xi.

Prediction Variance. Prediction variance is a measure of
the uncertainty iny due to uncertainty in inputsx. The
prediction variance is estimated in Equation 6–2 as

bV [y] =
1

nr

nX
j=1

rX
k=1

(yjk � y)2 :
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Values of
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Figure 6.1 The r replicates of
an LHS design for one input

VCE — VCE(xi). An indicator of the importance ofxi
is the VCE and corresponding correlation ratio. The VCE
for xi given by Equation 5–2 is

VCE(xi) = V [E(y j xi)] :

It is estimated in Equation 6–3 as

dVCE(xi) =
1

n

nX
j=1

�
yj � y

�2

�
1

nr2

nX
j=1

rX
k=1

�
yjk � yj

�2
:

Correlation Ratio — �2. The correlation ratio compares
the size of the VCE with that of the prediction variance.
The correlation ratio forxi from Equation 5–5 is

�2 = V [E(y j xi)]=V [y]

= VCE(xi)=V [y] :

It is estimated in Equation 6–4 as

b�2 = R2

a = dVCE(xi)=bV [y] :

In the formulas for the VCE and correlation ratio just
presented, the single inputxi can be replaced by a subset
of inputsSx. In that case, the VCE and correlation ratio
would be indicators of the importance of the subset of
inputs. The sample valuesfyjkg would be labeled inj
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to correspond to the distinct sample values (sites) ofSx.
There may be only one such value, the vector of medians,
or there may be a sample ofn values from an LHS.

Important inputs are selected sequentially, in a manner sim-
ilar to step-up regression. SubsetSx represents the subset
of inputs selected so far andSc

x represents the remainder
of the inputs. The importance of the additional inputs,
say,x� in Sc

x is to be assessed. The sample observations
fytjk; t = 1; � � � ; s andj = 1; � � � ; n andk = 1; � � � ; rg are
labeled onj to correspond to then distinct values of
the inputx� under consideration. The indext labels the
different sites forSx, andk, as before, indexes replicates
of the LHS of sizen on Sc

x.

PVCE — PVCE(x�;Sx). An indicator of the importance
of the additional inputx� beyond that of the subset of
inputs Sx is the PVCE and corresponding correlation
ratios. The PVCE forxi adjusted forSx is given in
Equation 5–10 as

PVCE(x�;Sx) = E(V [E(y j fx�; Sxg) j Sx]) :

It is estimated in Equation 6–13 by

dPVCE(x�i ;Sx) =
1

sn

sX
t=1

nX
j=1

�
ytj � yt

�2

�
1

snr2

sX
t=1

nX
j=1

rX
k=1

�
ytjk � ytj

�2
:

Partial Correlation Ratio — �2p. The partial correlation
ratio compares the size of the PVCE with that of the
residual prediction variance after adjustment forSx. It is

given in Equation 5–12 as

�2p = E(V [E(y j fSx; x
�g) j Sx])=E(V [y j Sx])

= PVCE(x�;Sx)=Residual(Sc
x;Sx) :

The partial correlation ratio forx� adjusted for the subset
of inputsSx is estimated by in Equation 6–14 by

b�2p = dPVCE(x�i ;Sx)

=

8<
:

1

snr2

sX
t=1

nX
j=1

rX
k=1

�
ytjk � ytj

�2
9=
;:

Partial Incremental Correlation Ratio — �2
inc

. The
partial incremental correlation ratio compares the size of
the PVCE with that of the (full) prediction variance. It
is given in Equation 5–13 as

�2inc = E(V [E(y j fSx; x
�g) j Sx])=V [y]

= PVCE(x�;Sx)=V [y] ;

and is estimated from Equation 6–15 as

b�2inc = dPVCE(xi;Sx)=bV [y] :

The bV [y] estimate of prediction variance from the original
sample can be used as a better estimate than one available
from a small numbers of sites.

Conditional Estimates. When there is onlys = 1 site
in estimates of the PVCE, partial correlation ratio, and
partial incremental correlation ratio, the estimates are
more properly called estimates of the conditional VCE,
conditional correlation ratio, and conditional incremental
correlation ratio, conditioned onSx = sx.
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7 STEPS IN UNCERTAINTY ANALYSIS

This section provides a general overview of uncertainty
analysis procedures; the steps are not tied to particular
methods. The overview is not exhaustive nor does it
address all possibilities likely to be encountered in a large
variety of applications or, even, in the sample applications
in this report. The steps are divided into four parts:
problem definition, screening, validation, and methods
sensitivity and diagnostic tests.

7.1 Preliminary Considerations
and Problem Definition

Objectives of the analysis of the predictiony from the
modelm(�) can be stated succinctly as (1) to quantify
prediction uncertainty and (2) to quantify the importance
of inputs with regards to prediction uncertainty. The
statement may be misleading in its simplicity because it
does not mention all of the specifications and restrictions
which apply. For example, early in the course of
performing the analysis it becomes clear that prediction
uncertainty fory = m(x) cannot refer toeveryprediction
usingm(�), but only to the specific application under
study, as quantified by the inputsx and their probability
distribution fx. Therefore, the appropriateness of the
representation of reality reflected byf

x
must be duly

assessed. The assessment extends both to the range
V—including range dependencies—of the inputs and to
the form of the probability distribution. It is important
to remember that uncertainty analysis is relative to the
uncertainty triple(f

x
; V;m(�)).

7.1.1 Definitions of Model Predictions
and Selection of Model Outputs

The actual model (computer code) outputs to be recorded
for each model run are specified. The model predictions
of interest might be outputs or they might be derived from
outputs. For example, an output might be deposition on
a spatial grid at several time steps. The corresponding
prediction of interest might be integrated deposition at
each time step or just total deposition. For simplicity of
presentation, the rest of this section considers a single
prediction y.

7.1.2 Identification and Specification
of Model Inputs

Inputs describe the application both in terms of initial
conditions of the scenario and in terms of the process
dynamics modeled bym(�). All relevant inputs, whether
they are called input variables, parameters, or data,
and whether they come from external input files or are
hard-wired in the code, are identified as being part of the
context of the uncertainty study. Some of the variables
are likely to be set to fixed values and not changed at all.
These variables are thought of as being assimilated into
the functionm(�). The remaining variables, those whose
values are assumed to have input uncertainties, are the
ones denoted byx and called inputs.

7.1.3 Assignment of Probability Distributions

For each input, limits on the range of values are specified.
Although narrow limits might be appropriate for a
preliminary uncertainty analysis, they should be wide
enough to provide adequate coverage in the anticipated
input space. On some occasions, however, accurate
bounds may be necessary, particularly whenm(�) is
sensitive to values at a boundary.

The joint range of values of some sets of inputs may
exhibit dependencies and not be the product of their
individual ranges. A common example of this behavior is
where the value of one input should not exceed that of
another. All such joint range dependencies are specified.

Probability distributionfx is constructed in parts:
individual or marginal distributions for inputs that
are statistically independent, and joint distributions for
those subsets of inputs that are dependent. Each subset
of dependent inputs falls into one of two kinds: the joint
range of values is the product of the individual ranges
or it is not. After all specification of ranges of values,
the forms of the probability distributions are determined.
For preliminary uncertainty studies, simple distributions
for fx, like the uniform and beta for finite ranges and
the normal and exponential for infinite ranges, and their
logarithmic cousins are often used for convenience’ sake.
In any event, an examination of sensitivity of conclusions
to the choice offx can be both informative and necessary
as part of scientific investigation.
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7.1.4 Construction of the Base
Case Set of Runs

The specification of model outputs, inputs, ranges of
values, input distributions, fixed input variables, and
their values provides the information needed to generate
a sample of model computer runs from which the
distribution ofy can be estimated. For independent inputs,
an LHS of appropriate size (n) is used. For inputs that
are not independent, the joint distribution is sampled
in any appropriate way, including the possibility of a
stratified sample.

The question of sample size is always present and
almost never answered satisfactorily. Several points bear
consideration. First, interest lies in estimation of the
density functionfy, and to that end, there are many
possible estimators. Statistical literature might provide an
evaluation of properties of the sampling plan used (LHS)
with respect to mean square error, say, of the density
estimator. Such an evaluation is beyond the scope of
this report. One approach to an empirical evaluation is
to try several sample sizes, say, 100, 500, and 1000, and
several samples of each size. An examination of different
estimates obtained from the samples and with different
settings of parameters in the density estimation algorithm
will guide one to a reasonable choice. It is supposed that a
very large number of computer runs can be made, and so
computer resources do not pose a conceptual limit on the
analysis. When computing resources are limited, either in
time or money, compromises will, undoubtedly, occur.

It is supposed that the base case set of runs consists of
an LHS of size 100, and from those data an acceptable
estimate of the density function of the predictiony is
constructed. The analysis continues with the identification
of those inputs and input subsets that are important with
respect to prediction variance.

7.2 Sequential Screening

The analysis proceeds from the base case to construction
of candidate subsets of important inputs. The measure
of prediction uncertainty used is prediction variance and
the measure of importance could be the correlation ratio.
The process is called screening because the subsets are
only candidates to be tested or “validated” before being
accepted as important. Screening is intended to allow
for a series of trial selections of important input subsets
which are later validated through a few comprehensive

tests. Several alternatives methods to indicate importance
are available. The sampling plans LHS and rLHS support
both variance estimation for the correlation ratio and
also regression methods which include partial correlation.
Both of these methods can be used simultaneously to
construct candidate subsets.

Most useful would be the determination of candidate
subsets of size 1, 2, 3, and so forth. The product of
this phase of analysis is lists of input subsetsCs =�
Cs
j ; j = 1;2; � � �

	
representing candidate subsets of

size s inputs each. Normally, interest might reside in
best subsets of size 1, 2, 3, and so forth up to some
(small) number of inputs that can be said to account for
essentially all of the uncertainty iny. In mathematical
terms, the process finds for each sizes those subsetsj�

for which V [y]� VCE
�
Cs
j�

�
is relatively small, subject

to sampling variability. Because of time for computation,
some analyses will proceed as directly as possible to the
smallest acceptable subset of important inputs. The full
sequential technique is used in the application in Section
8 and the abbreviated one is used in the application in
Section 9.

Wheny is really several predictions, one might perform
several screening exercises in parallel by constructing
candidate subsetCs to be the superset of candidates, those
inputs considered important for at least one prediction.
This process has a drawback if there are multiples stages
in screening, as described in Section 9. Namely, the
result is really the identification of the inputs which are
unimportant for any of the outputs. If identification of
important inputs for each output is necessary, separate
analyses for each output may be necessary.

7.3 Validation and Diagnostic Testing

Validation and diagnostic testing provide independent
evaluation pointing towards confirmation of the importance
of inputs selected with the screening procedures. Let
Sx denote the set of inputs to be validated andSc

x

the remaining inputs. Validation consists of two
complementary steps. The first step in validation is
to examine the conditional prediction distributions when
the supposed important inputsSx are held fixed. If these
distributions, independent of the conditioning valuesx,
reflect a substantial reduction in uncertainty as compared
with the unconditional prediction distribution, thenSx is
confirmed as important relative to prediction uncertainty.
The sample of conditioning valuesfsx1; sx2; sx3; � � �g at
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which Sx is fixed must be adequate to cover the range
of S

x
. It is not possible to state a sample size generally

adequate for all analyses.

The second step in validation examines the conditional
distribution ofy when the supposed unimportant inputsSc

x

are held fixed. The conditional distribution ofy is expected
to look very much like the unconditional prediction
distribution independent of the value ofSc

x
. These two

validation steps follow from the characterizations of
importance and prediction uncertainty in Section 4.

Finally, diagnostic testing is meant to describe the
examination of the data generated during screening and
validation. Simple procedures such displaying output
valuesy, or scatter plottingy versusx, or displaying
sample standard deviations for candidate subsets or for
different sites for fixed subsets can all point out important
relationships and behaviors which go undetected by
summary statistics used in screening.

7.4 Summary of Steps in
Uncertainty Analysis

Uncertainty analysis consists of two parts: preliminary
analysis and final analysis. The main difference between
the two lies in the probability distributions of the inputs.
In a preliminary analysis, approximate distributions like
the uniform and loguniform that are easy to work with are
matched (fit) to the range, mean, percentiles, and other
information about the inputs. Results of the analysis may
be tested for sensitivity to changes in distributions. In a
final analysis, best estimates for critical input distributions
are used. A typical sequence of steps appears below.

(1) Identify and describe all potential parameters or input
variables. They fall into three categories: those
relating to the numerical algorithms, those describing
phenomenology or mechanics of the process being
modeled, and those describing the event or scenario
being studied.

(2) Identify any inputs which will not be further
considered and state how they will be assigned
values.

(3) Identify any subsets of inputs that cannot be varied
independently.

(4) Choose ranges of variation for those inputs that can
be varied independently.

(5) Define domains for each subset of inputs that cannot
be varied independently.

(6) Assign uniform or loguniform distributions to
independent inputs.

(7) Define appropriate joint distribution functions for
dependent subsets of inputs.

(8) Obtain base case sample where all inputs vary.

(9) Determine important subsets of inputs:

(a) Initial stage analysis. Important inputs are
determined for each output. Those inputs not in
any of the lists are deemed unimportant.

(b) Subsequent analyses. Separate sequential
screening is done for each output to determine
important inputs. As before, those inputs not in
any of the lists are deemed unimportant.

Sequential analyses serves several purposes and can
produce a more complete subset of important inputs
the more the model deviates from linearity.

(10) Perform suitable validation and diagnostic testing:

(a) Unless a single subset of important inputs for
all outputs is to be identified, each model output
should be analyzed independently relative to its
own subset of important inputs.

(b) If important subsets do not sufficiently account
for prediction uncertainty, continue with the
sequential input selection in (9).

(c) Data from the analysis is examined to reveal
any previously undetected relationships and
behaviors.

(11) Determine final probability distributions for important
inputs, and assign the same preliminary distributions
to the unimportant ones.

(12) Choose among alternative submodels.

(13) Repeat (8)–(10).

(14) Examine sensitivity of results to perturbation of
input distributions. This step is another uncertainty
analysis in itself, where the “inputs” define the real
input distributions. Whether a formal or informal
analysis is carried out is a matter of choice.

(15) Continue if any corrective actions appear necessary.
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8 ANALYSIS APPLICATION I

In the discussion to follow, the parts of an analysis
presented in the previous section are applied to a model
which predicts flow of material in an ecosystem. The
details of application are intended to serve as a guide
to a simple uncertainty study. The analysis follows
McKay and Beckman (1994b) where important inputs
are screened—tested for importance—in stages: top
single inputs, top pairs, top triples, and so forth. The
top 10 or so candidates at each stage move on to the
next stage to be augmented by an additional input. This
type of analysis requires an extensive number of runs,
so it may not be appropriate for all models. The second
analysis application (Section 9) uses a modification of the
procedure for longer-running models.

8.1 Problem Definition

The modelm(�) is a compartmental model of an
ecosystem. The flow of material among the several
compartments, indicated in Figure 8.1, is described
by a set of linear differential equations which relate
concentrations in compartments as functions of time.
Although eight output compartment concentrations are
outputs calculated by the model, only the concentration
in compartment C3 at a large value of time when the
system is in equilibrium is considered in this analysis. The
inputsx are 84 coefficients comprising initial conditions
and transfer coefficients. The uncertainty analysis is
required because of uncertainty in appropriate values of
the 84 inputs.

C1
C2

C3

C4C5 C6

C7

C8

Figure 8.1 Compartmental model

The purpose of the analysis is twofold: first, to obtain a
preliminary estimate of the variability of prediction due
to input variability and, second, to supply guidance for
refining uncertainty limits for input values. Literature
review and expert judgement provide absolute ranges
and best estimate values for each input. Because the
analysis is preliminary, only minimal effort is expended
to quantify shapes of probability distributions on the
ranges or in investigating and representing statistical
dependencies among inputs. Independent uniform
probability distributions are used for all inputs except
those that vary over several orders of magnitude, for
which loguniform distributions are used. In summary,
the study considers

• y, the concentration in compartment C3 at equilibrium

• x, a vector of 84 inputs which are parameters in
differential equations that govern the concentrations

• fx, a joint, independent uniform or loguniform
probability distribution for the inputs

An assumption motivating the analysis is that reducing
the uncertainty in a subset of the inputs reduces the
uncertainty iny. Whether or not the assumption is true
in this case will be investigated by examining conditional
distributions ofy when important inputs are held fixed.
The assumptions of independent uniform distributions of
the inputs is not examined in the application, although that
would be necessary in a complete uncertainty analysis.
Finally, the model runs very quickly and so there are
essentially no limitations on the number of computer runs
that can be made.

8.1.1 Base Case Sample

A base case sample of size 250 is constructed as described
in Section 6.1.1 for an rLHS of sizen = 25 with r = 10
replicates. Construction of the sample design begins with
the 25 row� 84 column matrixD0 corresponding to
an LHS of size 25. The replicates are formed from that
matrix by randomly permuting its columns 10 times to
form to the full 250� 84 design matrix

D =

2
664

D1

D2

...
D10

3
775 :
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The construction points out that the same 25 values for
each input appear in each of the 10 replicate design
matrices and that the replicate design matrices differ in the
input combinations designated by the rows of the matrices.

8.1.2 Prediction Distribution

The estimate of prediction density functionfy obtained
from the base case sample of sizeN = 25 � 10 = 250
runs is shown in Figure 8.2. The density function was
estimated using the function “density” in the S Language
(Becker, Chambers, and Wilks, 1988) from the S–PLUS
software (Statistical Science, 1991). Although the mode of
the distribution is about 10 and there is a lower bound of
0 on concentration, values larger than 100 are very likely.
The long tail of the distribution extends beyond 400 and
shows thaty has a wide range of variation. Because
of the nonsymmetric shape offy, simple measures like
the mean value (168), the median (26), and the standard
deviation (400) are inadequate as full descriptions of the
probability distribution ofy. In fact, the range of the
data used in estimation is 0.02 to 7700. Therefore, the
effect on uncertainty of reducing prediction variance is
observed better and more completely in the (estimated)
density function itself.

0 100 200 300 400
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01

2

Concentration (g/kg)

Figure 8.2 Estimate of prediction densityfy

In the base case data, there are 10 very large values
of y (on the order of 7000 g/kg) coming from the tail
of its distribution. These outliers have undue influence
on the sample variance used in importance measures.
The situation is alleviated by use of the rank transform
of y when doing input screening. For the base case
data, the 250 values ofy are ordered from smallest to
largest. The smallest value is replaced by 1, the next
smallest by 2, and so forth to the largest value which
is replace by 250. There is nothing particularly optimal
about the rank transformation in this application: the
logarithmic transformation would be another acceptable

choice. Although the rank-transformed data are used in
screening when selecting potentially important inputs,
the density functions ofy examined in validation are
calculated with the original data values.

8.2 Sequential Screening Procedure

The correlation ratio (Eq. 5–5) and other variance
ratios are used as importance indicators for screening.
Nevertheless, the concurrent use of the partial rank
correlation coefficient is a reasonable practice. Subsets
of inputs (Sx) are evaluated in stages. Those whose
importance indicators are large enough become the
candidate or top subsets in the stage. In Stage 1, base
case data are examined for individual inputs. The top 10
or so inputs are designated the Stage 1 candidates and
become the first elements of subsets of size 2. The top
10 or so of these become the first 2 elements for subsets
of size 3, and so forth. At each stageh, subsets of size
h are examined, and those most promising—the 10 or
so—become candidate subsets in the listCh. There is no
reason that candidate lists be constructed by increments of
one input. For example, it is reasonable to proceed from
the list of candidate individual inputsC1, to examination
of subsets of size 3, say. This strategy might be taken
when three inputs stand out as dominating prediction
variance, strongly suggesting that any important subset
would contain all three of them. However, when inputs
are dependent it may not be necessary that they all be
selected as part of the subset of important inputs.

The transition from one stage to the next is explained for
Stage 1 to Stage 2. The transition from arbitrary stagesh

to h0 > h+1 uses a different procedure and is explained in
a subsequent section. In general, the procedure requires a
large number of computer runs, so it may not be practical
for all models. Reasonable modifications include selection
of only the top candidate at each stage and its subsequent
augmentation by several inputs instead of just one at
a time—the approach used for the second application.
Discussion of details of the analysis continues.

8.2.1 Stage 1

For each of the inputs, the ranked values ofy are ordered
and relabeled to correspond to the ordered values of that
input and are used in the computations of the VCE andR2

a

(or R2) from Equations 6–3 and 6–5. The denominator
of R2

a is the same for all inputs because it is independent
of the ordering ofy-values.
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Figure 8.3 Ordered R2

a
for single inputs

The 84 values ofR2

a
for each input are plotted in Figure

8.3. The values are plotted from largest to smallest,
and negative values are plotted as zeros. The largest
8 values correspond to inputs in the list of candidates
C1 = f63; 1;84; 69; 24; 68; 20; 67g. The largest few
of these correspond to only about 20% of variability
accounted for, indicating the contribution of any individual
input to prediction variance is less than 20%. Moreover,
because of the sample-to-sample variability expected in
the values ofR2

a
, it is difficult to point to any of the larger

values as being significantly different from others.

TheR2

a
-values for the inputs inC1 appear large enough

to be set off from the rest. However, since no individual
input subsetS1 of size 1 dominates uncertainty fory, the
analysis continues with identification of candidate input
subsetsS2 of size 2.

Before proceeding to Stage 2, the effect of input1 is
investigated in more detail to provide insight into the
analysis process. The effect on uncertainty iny of x1,
whoseR2

a
is about 0.20, is shown through two sets of

conditional distributions. This part of the analysis has the
flavor of the validation step: the effect on the uncertainty
in y of fixing input 1 at different values is examined.
When input1 is fixed, the variability iny is due to the
other 83 inputs varying. Ten values ofx1 are selected
using LHS to provide a sample ofx1 which spans its
range. For the other 83 inputs, an LHS of size 250 is
constructed which samples their 83–dimensional space.
At each point in thex1 sample, 250 model runs are made
using that value and the LHS-250 for values of the other
inputs. The 250 output valuesy are used to estimate
the conditional density ofy given x1 fixed. These 10
conditional densities are plotted in Figure 8.4. The
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Figure 8.4 Conditional densities
of y for 10 values of fx1g

densities show the effect of changing the fixed value of
x1 on the distribution ofy, and offer the interpretation
to theR2

a
value of about 0.20. Namely, whilex1 alters

the distribution ofy, it alone does not seem to be able to
significantly reduce the prediction variance.

To complete the examination related tox1, the effect of
the complement subset of 83 inputs is examined in the
same way. An LHS of size 10 is used to select 10 values
of the 83-tuple of other inputs; an LHS of size 250 is
used to select 250 values ofx1. For each value of the
83-vector, the conditional density ofy is estimated from
the runs with the 250 values ofx1. The densities are
plotted in Figure 8.5. The patterns in the figure show
two things. First of all, each curve indicates the extent
of the variability in y caused byx1, because onlyx1
varies for each density. Second, as expected, the curves
indicate existence of important inputs among the 83 by
the differences among the 10 densities. The next stage in
the analysis looks for important inputs from the 83.

8.2.2 Stage 2

Stage 2 denotes the construction of subsets of size 2. It
generalizes to transitions from subset sizeh to h+ 1 and
is discussed accordingly. The possible subsets considered
are all of those that include a member from the listC1

identified in Stage 1. That means, for example,x1 is
allowed to pair with any of the other 83 inputs, butx2
can only pair with the inputs inC1. It is true that there
may be important pairs of inputs not containing any of the
inputs inC1 and which may not be identified in this stage.
There are 3486 possible pairs of which only 8� 83 = 664
are to be examined because only 8 inputs were selected
as candidates in Stage 1. Although special algorithms
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Figure 8.5 Conditional densities
of y for 10 values of fx2; � � � ; x84g

exist to select optimal subsets in variable selection in
regression, step-up, and step-wise procedures are still
used. The procedures described here are similar to the
heuristic procedure of step-up variable selection. Heuristic
procedures and investigator intuition must suffice until
approximate bounds on optimal VCE are developed.

Stage 2 calculations are explained forx1, on one of the
candidates from Stage 1, before presentation of complete
results for Stage 2. Withx1 set to a fixed value, an
analysis like the one for Stage 1 for the remaining 83
inputs can be performed. Thus, the other 83 inputs
can be screened for important inputs conditioned on the
value ofx1 using the conditional VCE andR2

a
. If the

calculations are carried out at several “sites” forx1 and
suitably averaged, the expected value of the VCE—the
partial VCE adjusted forx1—is estimated for use in the
computation of the partial correlation ratio adjusted for
x1. Thus, Stage 2 is essentially just Stage 1 at a sample
of sites forx1. Finally, the VCE and correlation ratio for
each full subset of size 2 made withx1 can be calculated
from Equation 6–10.

The design for Stage 2 has two components: a design
matrix for the values ofx1 and another for the values of
the other inputs. Using Taguchi terminology (Taguchi,
1986), the design onx1 would be called the outer
array and the one on the other inputs the inner array.
The full design is the product of the two. To provide
some continuity of sampley-values for comparison
purposes—so that changes observed are less likely to be
due to sample-to-sample variations seen in independent
samples—modifications of the original base case design
matrixD are used for designs in all stages. At each of
s sites, 250 runs are made using the base case design

••

••••••••
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Figure 8.6 Ordered R2

a
for pairs of inputs

matrixD with the column corresponding tox1 replaced
by a column of the constant site value ofx1. In this
application,s = 4 site values are used for all inputs inC1.
The values are the 12.5, 37.5, 62.5, and 87.5 percentiles
of the distributions of the inputs.

For each input, the conditional VCE andR2

a
are estimated

at each site from Equations 6–12 and 6–16. The estimates
are combined to form the PVCE andR2

a
adjusted for

x1 as in Equations 6–13 and 6–14. Finally, theR2

a
for

each 2-input subset is formed as the sum of the VCE(x1)
estimated in Stage 1 and the PVCE estimate in Equation
6–13. Similar calculations for the rest of the inputs inC1

complete the computations.

Ordered values ofR2

a
for 2-input subsets are presented in

Figure 8.6. A natural grouping like the one in Stage 1
is not as apparent, so a somewhat arbitrary cutoff at 14
pairs is selected in the figure. Of interest, however, is
that all of the top 14 pairs are composed of inputs from
C1 and that maximumR2

a
-values are about 0.40. This

suggests that minimal subsets will include several inputs.
The wavy pattern in Figure 8.6 comes from strings of
subsets having common members.

The candidate pairs selected in Stage 2 are indicated
in Figure 8.7. The candidate listC2 includes all 10
possible pairs from the input subsetf1;63; 68; 69; 84g
plus the 2 pairs of63 with f24; 67g plus the 2 pairs of
24 with f1; 69g. IncrementalR2

a
-values are informative

because they provide the incremental contribution of
additional single inputs adjusted for the presence of the
already selected input(s). Comparison of Figures 8.3 and
8.6 indicate by subtraction incrementalR2

a
-values. The

5-input subset off1; 63; 68;69; 84g is strongly suggested
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as part of a minimal important subset, so moving
directly to Stage 6 with the single 5-tuple candidate
C5 = f(1;63; 68; 69; 84)g is indicated.

1 63 68 69 84 24 67
1 x x x x x �
63 x x x x x x
68 x x x x � �
69 x x x x x �
84 x x x x � �

24 x x � x � �
67 � x � � � �

Figure 8.7 Candidate input pairs in C2

The analysis forx1 alone used (4 values ofx1) �
(rLHS-25� 10) = 4� 250 = 1000 computer runs. To
perform the same calculations for the 8 inputs inC1

requires 8000 runs. Because the model was fast running,
no consideration was given to limiting sample sizes. In
other applications the number of runs might have to
be reduced. By no means is it intended that 8000 is a
required minimum number; it was used for convenience.
In this application there may be a question of the adequacy
of using only 4 points when augmenting. The important
issue is whether inputs are overlooked in the screening
process. The issue is addressed in the validation step.

8.2.3 Subsequent Stages

Subsequent stages evolve very much like Stage 2 from
Stage 1. The candidate listCh from Stageh consists of
subsetsSh of h inputs. Each subset is sampled according
to an LHS of size 4 to generate the 4 sitesfv1; v2; v3; v4g.
The design matrix at sitet is

vt 
D(S2) ;

meaning that the base case design is modified by replacing
the original values for the subsetSh with the site values
vt. Other computations proceed as in Stage 2, except
that the previously selected candidate is a multiple input
subset rather than just a single input, although it is treated
logically as an input variable.

Ordered values ofR2
a

for Stage 3 are presented in Figure
8.8. A somewhat arbitrary cutoff at 16 triples is selected
in the figure. Of interest is that all of the triples except for
one come from the 6-subsetS6 = f1; 24; 63; 68; 69; 84g,
and that all six inputs in the top triples appear inC1.

•

••••••
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Figure 8.8 Ordered R2
a

for triples of inputs
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Figure 8.9 Conditional densities
of y for 10 values of fx1; x68; x69g

After the 16th largestR2
a
, inputs other than those in

S6 = f1; 24; 63; 68; 69; 84g appear, and so the top 20 are
not all the possible triples fromS6.

One of the top input subsets isf1; 68; 69g. The conditional
prediction densities in Figure 8.9 show that the subset
significantly reduces the variability iny as indicated
in the tails of the densities when compared with the
marginal distribution in Figure 8.2. The complementary
conditional prediction densities in Figure 8.10 look very
similar to those in Figure 8.9, suggesting that the analysis
may be about halfway to completion.

The sequential screening procedure terminated with the
selection of a single subset of 11 of the 84 inputs, which
causes the long, heavy tail of the prediction distribution.
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Figure 8.10 Conditional densities ofy for
10 values offx2; � � � ; x67; x70; � � � ; x84g

8.3 Validation

The purpose of validation is to provide confirmation
that subsets identified as important do indeed control
or explain prediction uncertainty. In the application,
prediction variance was the criterion for screening, and
so reduction in prediction variance by important subsets,
as measured by the VCE, is guaranteed. Nevertheless,
confirmation through examination of conditional prediction
densities is required. Had the screening criterion been
partial correlation, for example, reduction in prediction
variance would not have been as obvious. Plots of
conditional densities for smaller input subsets have
already appeared. Examination of the effect of the final,
11-input subset follows.

Ten conditional prediction densities corresponding to 10
values for the subsetS11

= f1;24;35; 48; 54;63; 67; 68;
69; 83; 84g are given in Figure 8.11. For each of the
10 densities, the effective range iny is about 100. The
marginal prediction density appears in the figure for
reference. Relative to it, controllingS11 essentially
controls y.

The residual variability which causes the spread in each
of the 10 densities is due to the remaining 73 inputs.
Figure 8.12 shows that for each of 10 sample values
of the 73 inputs, the variability iny due toS11 looks
essentially like the prediction distribution. Thus, the
objective of identifying a (small) subset of the inputs that
essentially accounts for the uncertainty iny is satisfied
in S11. The residual uncertainty of 100 or so is not
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Figure 8.11 Conditional densities ofy
for 10 values of the important inputs
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Figure 8.12 Conditional densities ofy for
10 values of the less important inputs

significant, in this application, relative to the full, free
range of 7000. However, the analysis could continue with
the identification of additional inputs which would reduce
the range iny even more.

As a final diagnostic aid, values of the square root of the
residual variance (the residual standard deviation) from
the candidate subsets selected in each of the 11 stages
are presented in Figures 8.13 and 8.14. The plots point
out two things. First of all, prediction variance is not
substantially reduced beyond that achieved by the best
subsets of size 4 and 5. Second, the standard deviation
from rank data decreases approximately linearly with size
of the best subset until it reaches its theoretical minimum
indicated by the horizontal line.
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Figure 8.13 Residual standard deviations in
concentration units for candidate subsets
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9 ANALYSIS APPLICATION II

The model used in this application is MELCOR Accident
Consequence Code System (MACCS), described in Helton
et al. (1992). The purpose of MACCS is to simulate the
impact of severe accidents at nuclear power plants on the
surrounding environment. In any particular application
of MACCS there are likely to be many possible inputs
and outputs of interest. For this application, attention
focuses on 3 outputs and 36 inputs. The objective is
to determine a subset of the 36 model inputs that is
dominant, or important, in the sense that they are the
principal contributors to prediction uncertainty. The
analysis follows McKay and Beckman (1994a).

This application differs from the first (Section 8) in
three ways. First of all, MACCS takes much longer to
run, therefore a sequential analysis based on selection
of inputs one at a time is replaced by the modified
approach where several inputs are selected at each stage.
Secondly, there are three model outputs rather than just
one. Finally, the outputs are vector valued rather than
simple scalars. The predictiony(t) is given for discrete
values oft 2 ft1 < t2 < � � � < tmg. Therefore, the
notationy means the vector of output values

y = (y(t1); y(t2); � � � ; y(tm))t :

9.1 Problem Definition

MACCS calculates consequences of a reactor accident at
a nuclear power station whose characteristics and those
of the surrounding environment are defined by inputs.
Because the purpose of this section is to demonstrate
methods, the inputs are identified only by number. The
names of the MACCS input variables are given in the
MACCS User’s Guide (Chanin et al., 1990) and listed in
Appendix B. The 36 inputs selected for study are only
some of the 67 used for MACCS input. Therefore, their
input numbers lie in the range from 1 and 67. The outputs
selected for examination are Early Fatalities (the number
of fatalities within 1 year of the accident), Total Cancer
Fatalities, and Population Dose. MACCS is composed
of submodels for source term, plume rise, atmospheric
transport, dry deposition, wet deposition, evacuation, food
chain transport, and dosimetry and health effects. Analysts
determined plausible ranges of uncertainty for the inputs
from the literature, experimental results, and submodel
considerations. Because of the preliminary nature of this
particular analysis, uniform and loguniform probability

distributions defined on input ranges are used. Joint
probability distributions or sample correlations are used
for subsets of inputs that can not be treated reasonably as
statistically independent. For many more details on this
part of the analysis process see Helton et al. (1992).

A necessary input to MACCS is weather condition.
Because weather is a random phenomenon, MACCS
can be thought of as a stochastic model when weather
is a sampled input. To account for the stochastic
variability due to weather, MACCS computes as outputs
three complementary cumulative distribution functions
(CCDFs) corresponding to Early Fatalities (EF), Total
Cancer Fatalities (CF), and Population Dose (PD). The
CCDFs are induced by treating weather conditions at the
time of the accident as a random phenomenon. Tables
of weather parameters (1 year of hourly readings of
wind speed, wind direction, atmospheric stability, and
precipitation) are sampled repeatedly during the MACCS
run to produce, in effect, a Monte Carlo estimate of the
CCDF, denoted byy(t). Therefore, the model “prediction”
corresponding to Early Fatalities is

y(t) = EF

= PrfNumber of Early Fatalities> tg

for t = t1 < t2 < � � � < tm :

Strictly speaking, for each setft1; t2; � � � ; tmg, the
set fy(t1); y(t2); � � � ; y(tm)g has a joint distribution.
However, it is sufficient for the analysis to examine the
distributions ofy(t) for eacht separately. For the sake of
discussion, the actual values oft have been replaced by
the integers 1, 2, 3, and so forth in what follows.

9.1.1 Base Case Sample

The base case sample is an rLHS withr = 10 replicates
of an LHS of sizen = 50. Then = 50 size was used
because of a code requirement for generating correlated
samples, as described by Iman and Conover (1982). The
r = 10 replicates is a somewhat arbitrary number that
could have been estimated by preliminary analyses. It
took about 12 hours to make 500 MACCS runs. Results
for EF are presented first.

9.1.2 Prediction Distribution

Each of the three outputs, EF, CF, and PD, actually has
81 prediction densities corresponding to the 81 values
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of t. Rather than calculating formal density estimates,
which would be somewhat difficult to interpret even as
a 3-dimensional plot, the prediction variability of the
outputs is presented informally in a plot of the actual
output calculations from the first replicate of the base
case sample. The data constitute a full LHS, and so
give a representative sample of model predictions. The
representative data for EF in Figure 9.1 are 50 CCDFs
for t from 1 to 50. The traces indicate regions of higher
and lower concentration of CCDFs.
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Figure 9.1 Representativey(t) for EF

The representative data for CF in Figure 9.2 are 50
CCDFs fort from 40 to 81. For values oft less than 40,
CF and PD are both constant at 1. The traces indicate
two bands of CCDFs. The lower band contains about
20% of the data.
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Figure 9.2 Representativey(t) for CF

The representative data for PD in Figure 9.3 are 50
CCDFs fort from 40 to 50. The traces show a relatively
uniform concentration of CCDFs except for one high
and one low CCDF.
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Figure 9.3 Representativey(t) for PD

9.2 Sequential Screening Procedure

The selection of important inputs in this application differs
from that in the first application for two reasons. First
of all, there are three model outputs rather than one.
Ultimately, each output is analyzed separately, although
alternative approaches might have been taken. Second,
each output is a vector of values rather than a simple
scalar. Thus, calculations of statistics and statements
about importance of inputs with respect to an output
actually refer to the several “outputs” in the vector of
output values.

9.2.1 Stage 1 for All Outputs

The first step in identification of important inputs is
the calculation ofR2(t) for each input. TheR2(t) are
computed with the base case sample data and are plotted
in Figures 9.4–9.6. Rank-transformedy-values are used.

The standard deviation of the full base case sample, the
first 50 values of which appear in Figure 9.1, is plotted as
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Figure 9.4 TheR2(t) for 36 inputs for EF
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the heavy curve ranging between 0 and 1 and indicated
on the right-hand axis. The standard deviation has been
normalized to a maximum value of 1, which occurs in
Figure 9.4 att = 1. The importance of inputs as indicated
by their R2(t) is to be viewed relative to the size of
the standard deviation. When the standard deviation is
small, as it is fort > 70 or so, importance of inputs
is not particularly relevant. This point is seen to be
more meaningful for the smaller values oft in Figure
9.5. Finally, the horizontal line extending from 40 to 81
corresponds to the 95% critical value forR2 and is used
as a reference point for preliminary selection of important
inputs. At the first stage, 10 inputs are identified as
important: numbers 27, 30, 31, 33, 38, 40, 42, 50, 59,
and 65. It is apparent that importance of inputs depends
of the value oft. The choices made represent inputs that
appear important for some values oft.
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Figure 9.5 TheR2(t) for 36 inputs for CF

Figure 9.5 givesR2(t) and standard deviation plots for CF.
The figure indicates the range of maximum variability for
CF—suggested in Figure 9.2—corresponds tot between
50 and 75. Within that range, 3 inputs stand out as
important. In all, 8 inputs were identified as important to
CF in Stage 1: numbers 30, 31, 33, 35, 47, 48, 59, and 65.

Figure 9.6 shows the similarity between PD and CF. This
figure, however, contains an example where an input is
indicated as important byR2 for t between 40 and 50
but not as much so, practically speaking, because of the
smaller variability in the values of PD, as indicated by
the standard deviation curve. Eight inputs are selected
as important for PD: numbers 28, 30, 31, 33, 34, 35,
47, and 48.

In the next stage of screening, previously selected inputs
are fixed at their median values and the importance of

t
40 50 60 70 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

R
-s

qu
ar

ed

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ca

le
d 

S
ta

nd
ar

d 
D

ev
ia

tio
n

Figure 9.6 TheR2(t) for 36 inputs for PD

the remaining inputs is assessed. However, the strategy
to follow with three outputs and three different candidate
subsets for Stage 1 is not apparent. In fact, different
models and analyses require different strategies. The input
subsets in Table 9.1 suggest three possible alternatives.
First, only the common inputs, 30, 31, and 33, might
be fixed. This strategy might work if those inputs were
clearly dominant for each output, which is not the case
in this application. Second, all 15 inputs might be fixed
for the next stage. The problem with that strategy for
CF, for example, is that the importance of inputs 38, 40,
42, and others, over and above that of those selected by
their R2-values, will not be known. As a result, the final
set of choices for important inputs is likely to be larger
than it need be. The final strategy is to proceed with
three separate analyses, one for each output. This strategy
suffers from the criticism of the second strategy when
applied to each value oft and requires a substantial number
of computer runs. However, it is a reasonable approach
which will provide useful and accurate information.

9.2.2 Subsequent Stages for EF

When the 10 inputs selected for EF, indicated in Table 9.1,
are fixed at their median values, prediction uncertainty
is reduced. The first 50 runs for the Stage 2 sample are
shown in Figure 9.7. The reduction in variability due
to fixing the 10 inputs is apparent by comparing Figure
9.7 with Figure 9.1.

The sample for Stage 2 is analyzed for importance just as
that from the first stage except that 10 inputs are at fixed
values. The Stage 2 for EF sample of input values is the
one from the first stage with the values for the 10 selected
inputs replaced by their median values. TheR2-values
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Table 9.1 Candidate inputs for EF, CF, and PD

Input # EF CF PD

30 + + +

31 + + +

33 + + +

59 + +

65 + +

35 + +

47 + +

48 + +

38 +

40 +

42 +

50 +

27 +

28 +

34 +
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Figure 9.7 Representativey(t)
for EF with 10 inputs fixed

computed for the remaining 26 inputs could be estimates
of partial correlation ratios except that only one site for the
previously selected 10 inputs was used. TheR2-values are
properly termed conditional and plotted in Figure 9.8. The
scale of the standard deviation is still the maximum from
Stage 1. Thus, it is seen that the maximum variability
has been reduced by about 40%. Also, there is a single
dominant input as indicated byR2 in a region of lower
variability in EF, for 0 < t < 20. Five additional inputs
are indicated in Stage 2: 29, 43, 47, 49, and 62.

For the next stage, the base case input sample is used but
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Figure 9.8 Conditional R2(t) for 26
inputs for EF with 10 inputs fixed

with 15 inputs set to their medians. The first 50 runs for
the resulting EF are given in Figure 9.9. The additional
reduction in variability, as compared with Figure 9.1,
is significant and may be sufficient to terminate the
designation of important inputs.

t

y(
t)

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 9.9 Representativey(t)
for EF with 15 inputs fixed

ConditionalR2 are computed for the remaining 21 inputs
and plotted in Figure 9.10. The scaled standard deviation
shows that variability is reduced to 15% of its maximum
in Stage 1. The behavior of the plots results from the
tight spread in the data and the use of the rank transform.
Thus, it is seen that the maximum variability is reduced
by about 40%. The additional important inputs indicated
in Stage 3 are 25, 45, and 48.

When the selected inputs are fixed at their medians, the
total of 18 of the 36 inputs fixed reduces the variability in
EF to that given in Figure 9.11. Sequential screening for
EF is halted at this stage, to be followed by the validation
phase. It is important to remember that as inputs were
selected, they were fixed at their median value. Therefore,
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Figure 9.10 Conditional R2(t) for 21
inputs for EF with 15 inputs fixed

the behavior of the EF for other fixed values is unknown.
Additional fixed values (sites) are investigated as part
of validation.
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Figure 9.11 Representativey(t)
for EF with 18 inputs fixed

9.3 Validation for EF

In the screening portion of the analysis, the set of important
inputs for EF was constructed in three stages. The 18
inputs chosen areSx = f25; 27; 29;30; 31; 33; 38;40; 42;
43; 45; 47; 48; 49; 50; 59;62; 65g. The objective of the
validation portion of the analysis is to determine (1) how
muchSx controls variability in EF whenSx is fixed and
the other inputs vary, and (2) how much the variability
caused by the other inputs obscures the changes in EF
caused byS

x
, and (3) how well the variability due toS

x

mimics the total prediction uncertainty of EF.

Figure 9.12 addresses points (1) and (2). EF from five
samples of 50 runs each are plotted in the figure. They
are presented as examples of the data that must be

investigated for validation and not meant to imply that
five is a sufficient number. Unfortunately, no hard and
fast rules exist for a sufficient number of validation runs
for a general model, so judgement must be exercised.
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Figure 9.12 Five sets of representative
y(t) for EF with important inputs fixed

The spread in each band is due to the inputs ofSc

x
. The

displacements of the bands is due to the important inputs
of Sx. For the application at hand, the figure suggests
that the important inputs have been adequately identified.
However, in any particular analysis an adequate sample
of validation runs must be closely investigated. In this
validation procedure, the values ofSc

x
are the same 50

for each band; only the values ofSx change from band
to band. Thus, intrinsic differences in band patterns are
due to interaction between the values ofS

x
and Sc

x
.

Investigation of such interactions is often profitable.

9.4 Validation for EF of Selections by
Partial Rank Correlation Coefficient

The same sample data used in the preceding analyses can
be used to compute partial rank correlation coefficients
(PRCCs). Although the PRCC is an established indicator
of importance, it relies on assumptions of linearity or
monotonicity for it to be effective. The PRCCs are
computed for two data sets: the first 50-run replicate in
the base case sample and the entire 500-run base case
sample. The first 50-run replicate represents a sample
size typical of common usage. By using the full 500-run
base case sample, the PRCC is given a more even footing
with variance ratios. For comparisons, the inputs selected
are given in Table 9.2.

Figures 9.13 and 9.14 correspond to Figure 9.11 and
are presented for comparison of the relative importance
of the inputs selected with PRCCs. The widths of the
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Table 9.2 Inputs selected for EF with
variance ratios, PRCCs from sample size

500, and PRCCs from sample size 50

Variance PRCC-500 PRCC-50

25

27 27 27

29

30 30 30

31 31 31

33 33 33

38

40 40

42 42 42

43 43

45

47 47 47

48 48

49 49

50 50

59 59 59

62

65 65

bands reflect the importance of the inputsnot selected
and, hence, the adequacy of the selection procedure.
Figure 9.13 shows the significant variability not accounted
for by the seven inputs selected with PRCCs in the
sample of size 50 (PRCC-50). Figure 9.14 shows that the
additional six inputs selected with PRCCs in the larger,
500-run sample significantly reduce variability in EF.
Whether the remaining variability is significant depends
on interpretation. However, a visually substantial amount
remains as compared with that in Figure 9.11.

This simple comparative study points out the shortcomings
of exclusive use of the PRCC—particularly without
validation—as an indicator of importance. However,
the PRCC is a valuable adjunct to variance ratios for
screening for important inputs. Its use in this manner
is recommended. (A simple example demonstrating a
complete breakdown of the correlation coefficient to
indicate importance is given in Appendix C.)
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Figure 9.13 Representativey(t) for EF
with 7 inputs from PRCC-50 fixed
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Figure 9.14 Representativey(t) for EF
with 13 inputs from PRCC-500 fixed

9.5 Subsequent Stages and
Validation for CF

The eight inputs initially selected for CF, indicated in
Table 9.1, have values fixed at their medians for the
second stage. The first 50 runs for the second stage
sample are shown in Figure 9.15.
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Figure 9.15 Representative
y(t) for CF with 8 inputs fixed
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The figure displays an interesting pattern with 2 of the
50 runs falling noticeable to the left of the remaining
runs. Further investigation of the pattern is not discussed
in preference to continuing with variable selection.
ConditionalR2 are computed for the remaining 28 inputs
and plotted in Figure 9.16. The scaled standard deviation
shows that variability is reduced to 60% at its maximum
in Stage 1. The six additional important inputs indicated
in Stage 2 are 29, 38, 40, 41, 51, and 60.
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Figure 9.16 Conditional R2(t) for 28
inputs for CF with 8 inputs fixed

When the 14 inputs selected are fixed at their medians,
the variability of CF is very small, as shown in Figure
9.17. The remaining variability is virtually eliminated by
the fixing inputs 27, 42, and 50. These last three inputs
are noted but not added to the list of important inputs
for CF because the additional reduction in variability is
not of practical significance.
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Figure 9.17 Representativey(t)
for CF with 14 inputs fixed

The final subsetSx of important inputs for CF contains 14
inputs. For a sample of five sites forS

x
, LHS samples of

size 50 in the remaining 22 inputs produce the five bands
in Figure 9.18. The figure shows how little variability is
caused by the 22 unimportant inputs.
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Figure 9.18 Five sets of representative
y(t) for CF with important inputs fixed

On the other hand, the variability attributable to the 14
important inputs is expected to be, approximately, the
same as the complete prediction uncertainty for CF. A
plot similar to Figure 9.18 but with bands corresponding
to fixed values of the unimportant inputsSc

x
demonstrates

the expectation. Because the bands overlap so completely,
band (sample) means and standard deviations are plotted
as functions oft in Figure 9.19 as a summary of the
bands of 50 sample curves. Ten data sets instead of five
are represented in the figure. Together, Figures 9.18 and
9.19 suggest that no important inputs were overlooked in
the sequential screening steps.
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Figure 9.19 Means and standard deviations
for CF with important inputs varying
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9.6 Comparison of Important
Inputs for EF, CF, and PD

Important inputs independently selected in the three stages
of sequential screening for each output are given in Table
9.3. Simultaneous screening can mask important inputs.
Had screening for the outputs been done in a simultaneous
fashion, all inputs indicated by 1 in the table would have
been fixed at Stage 2. As a result, the importance of input
47 for EF would have been masked by its selection as
important for CF and PD in Stage 1. This example points
out a drawback of simultaneous analysis of outputs.

Table 9.3 Important inputs and stages
when selected for EF, CF, and PD

Input # EF CF PD

29 2 2 2

30 1 1 1

31 1 1 1

33 1 1 1

38 1 2 2

40 1 2 2

47 2 1 1

48 3 1 1

59 1 1 2

65 1 1

27 1 2

35 1 1

41 2 2

60 2 2

25 3

42 1

43 2

45 3

49 2

50 1

62 2

51 2

28 1

34 1
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10 SUBMODEL UNCERTAINTY

This section discusses several techniques to use in
evaluating structural uncertainty for submodels. Although
easier to approach than general structural uncertainty, the
area is in its early stages of development. Therefore,
the contributions below address special cases and are to
be viewed as tentative. The final topic of the section
concerns how one might choose between input and
structural uncertainty when comparing model prediction
with validation data.

Submodel uncertainty is examined as a special case
of structural uncertainty following McKay (1993). A
submodel is a meaningful intermediate calculation within
the context of the entire model. That is,s(�) is a submodel
when it is a function of the inputs andm(x) = m�(x; s(x))
is a nontrivial function ofs(x). If s(�) is a function of a
subset of the inputsv � x = fu; vg, then the calculation
of the output is described as in Figure 10.1. The notation
used is thats(�) refers to the structure of the submodel
and thats(v) refers to its calculated output value as a
function of v.

u

Inputs x

Output

Model except 
for submodel

Submodel

s(v)
Intermediate
calculation

y

v

Figure 10.1 Calculation via a submodel

Submodel uncertainty is discussed in two cases. The first
supposes there are several known submodels for which
relative effects on uncertainty in predictiony are desired.
The approach in this case compares the separate analyses
where each submodel is used. The second case supposes
there are no known alternative submodels and assesses
importance of perturbation of the submodel calculation
relative to importance of model inputs.

There is an important difference between structural
uncertainty in general and submodel uncertainty in

the two special cases. Namely, the effect of different
submodel calculations—with alternative submodels
or perturbations—can be evaluated in changes to the
prediction distribution arising from input uncertainty.
Consideration is now given to the two cases: the case of
competing submodels and the case of perturbation of the
calculation of a single submodel.

10.1 Competing Submodels

For the more simple case of competing submodels,
an obvious strategy uses the differences within the
set of prediction probability distributionsfy from
input uncertainty corresponding to each submodel
individually. If the probability distribution functions
do not differ significantly, submodel choice does not
have a substantial impact on prediction uncertainty. The
question here is one of practical significance as opposed
to statistical significance, although there may be a place
for a significance test. In other words, a subjective
determination has to be made as to the importance of
observed differences among the probability functions
relative to the spread of predicted values described
by the individual distributions. Specifics regarding
methods for comparisons will have to be investigated.
Although there do not seem to be any simple, uniquely
applicable measures, possibilities include relative entropy
(or Kullback-Leibler distance) as discussed by Kullback
(1968) and Cover and Thomas (1992) and measures like
Hellinger distance and Matusita’s distance (see Kotz and
Johnson, 1982).

If subjective probabilities are associated with the choices
of submodels, two additional options are available
for assessing competing submodels. First, the set of
prediction probability functionsfy due to the submodels
could be viewed as the set of conditional distribution
functions from which can be determined the unconditional
distribution of y that incorporates submodel uncertainty.
This distribution might be used by decision-makers as a
summary of prediction uncertainty from the competing
models. Second, an indicator input variable which selects
from among the competing submodels could be analyzed
together with the other inputs as part of input uncertainty.
In both options, choice of input distribution function
(fx) might depend on the particular submodel being
used. Also, relative advantages and disadvantages of
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the approaches will depend on the particular instance of
model and submodels.

10.2 Perturbation Method
for a Single Submodel

In the case of a single submodel, (random) perturbation
of its calculation artificially creates the effect of using
different submodels. In paralleling the use of a selection
indicator variable, a perturbation input variable that
varies according to a prescribed probability distribution
is used to control the perturbation of the submodel
calculation. A perturbed calculation represents, in a sense,
an unknown competing model calculation,~s(v). Two
possible representations for~s(v) are an absolute, additive
perturbation and, under restrictions, a proportional,
multiplicative one as indicated in Equation 10–1.

~s+(v) = s(v) + �(v)

~s�(v) = s(v) � �(v) (10–1)

Proportional limits like a factor of 2, indicating
multiplications by 2 and 1/2, and limits like plus or
minus 10% are familiar. So, to simplify discussion and to
make computing more convenient, it is assumed that~s(v)
can be constructed as a fraction ofs(v) within prescribed,
multiplicative limits. Of course, the assumption fails when
s(v) is 0, and it might be better to use the additive form
when values ofs(v) can be both positive and negative.
Whether the additive or multiplicative form is used, key
issues are the dimensionality ofs(v) and the dependence
of � on v. (When� is used as a multiplier, it is sometimes
referred to as a “dial.”)

10.2.1 Scalar Submodel Output

The first case is that of scalar submodel output, and
supposes that absolute limitsL � s(v) � U on its value
can be assigned. The perturbed submodel calculation
must be restricted to lie within the limits. When a
proportional perturbation of the submodel calculation
provides adequate variation for the purpose of evaluating
submodel uncertainty, a perturbation input variable is used
to multiply the submodel calculation. For example, letting
the range of the perturbation variable� be (1=�; �) or
(1� �; 1 + �) when� � 1, the submodel calculations(v)
could be replaced by~s(v) = � � s(v), where� is taken to
have a uniform distribution on the interval or a loguniform

distribution on the interval with logarithmic limits. In
either case, limits of variation are defined in terms of�.

Evaluation of submodel uncertainty for a scalar output
can be done for selected values of the range,�. For any
suitable importance measure, the importance ofs(�) can
be assessed as the (input) importance of the perturbation
factor� for fixed �. Then, subjective determination of the
effect of uncertainty in the submodel can be examined as a
function of the range of perturbation�. In particular, one
might identify the value of� below which uncertainty in
the submodel is unimportant relative to input uncertainty.

There is a very special case where inputsv to the
submodel calculation are restricted to that calculation,
and the model can be written asm(u; v) = m�(u; s(v)).
For this case, the dashed line in Figure 10.1 from thev
circle is not present. The analysis can be simplified by
replacing the submodel calculations(v) by s0, an ordinary
input variable. The inputs0 would be defined on the
interval (L;U). It is not clear what a suitable (sampling)
probability distribution fors0 would be. The actual
distribution ofs(v) induced by the probability distribution
for v might indicate a course of action. Allowing that
a distribution can be developed, submodel uncertainty
proceeds as a study ofs0 as a part of input uncertainty
without using the submodel calculations at all.

10.2.2 Vector Submodel Output

When the submodel has multiple output calculations,s(v)
is a vector whose components can be combined with
the true inputs and treated as a subset of inputs whose
importance is to be assessed. The situation is complicated
because it is likely to be unreasonable to let the range
of each component ofs(v) vary independently to any
significant degree. An example of such an output is the
wind field calculated by an atmospheric dispersion model.
As a first approximation, a bounding box is defined
centered ats0 whose proportions (shape) are determined
by a fixed vector�s and whose size is determined by
a scale parameter�. The shape of the box defines the
allowed proportional variation in the components ofs(v).
Importance ofs(v) is then assessed as a function of
the scale,�, of the box which measures the amount of
perturbation.

If there is interaction among components ofs(v), the
direction of the vector�

s
becomes significant to the

analysis. While it may be informative to examine
importance as a function of the direction ofs(v), high
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dimensionality ofs(v) may make complete analysis
difficult. A possible approach is to treat the direction
cosines of�s as inputs and to perform an analysis in the
spirit of principal components.

10.2.3 Nonseparable Inputs

In previous discussions,s(v) or its components could
be viewed like model inputs that were independent
of the true inputs to the model. The reason was that
dependency ofm(�) on v was throughs(�). Besides
examining alternative submodels as arbitrary functions
es(�), they might be examined through and as probability
functions defined on the space ofs(v), the submodel
output. These distributions would be independent of the
distribution of the true model inputs. When input to
the submodel is nonseparable and appears elsewhere in
the model calculation, assessment of effects of submodel
perturbation becomes difficult because the probability
distribution of submodel output will have to be properly
treated as a function ofv except in extraordinary situations.

10.3 Components of Error

It is important to be able to decide between input error and
structural inadequacy when model prediction and external
validation information do not agree. Relevant external
information might be available and include experimental
data, observational data, or expert opinion.

The first case is for a single model and input distribution.
“Best estimate” input valuesx� and “best” modelm�(�)
predict the data value�. The best prediction is

y� = m�(x�) ;

for which the absolute value of prediction error is

"� = jy� � �j :

In a very formal manner, an allocation process between
inputs and model structure might begin with

"(x;m) = jm(x)� �j

as the difference for unspecific inputx and modelm(�).
For the model of interestm�(�),

Vx(m
�; �) = fx j "(m�; x) � "�g

denotes the set of input values for which the difference
between prediction and data is less that the observed

difference"�. The probability content of the set underfx
is denoted bypx. That is,px is the probability content
of the set of inputs producing a difference between
prediction and data less than"� whenfx is the likelihood
for “correct” input values. Similarly, for inputs fixed atx�,

Mm(x�; �) = fm j "(m;x�) � "�g

denotes the set of models values for which the difference
between prediction and data is less that the observed
difference"�. The probability content of the set under
gm is denoted bypm. How one might preceded from this
point is the subject of further research.

Two other cases are now presented. They pertain to
choosing between two alternative models and choosing
between two alternative input distributions. The situations
are similar to one of competing models discussed in
Section 10.1. In the first case, the objective is to decide
which of the two models is more appropriate, relative to
data, under the assumption that the correct distribution of
input valuesfx is known. Figure 10.2 describes the case
for a scalar input and output.

Data value

x

Model 1

Model 2

Distribution of x

y = m(x)

Inferred
    x

Figure 10.2 Choosing between two models

A strategy to select the model that makes the inferred
x-value more likely shows, from the figure, that Model
1 associates anx-value “more likely” relative to the
observed data than does Model 2. More likely is in the
sense thatx for Model 1, indicated by a dashed line from
the Model 1 solid line, has a higher likelihood (value of
distribution fx) than the one for Model 2. Thus, based
on a likelihood argument, the evidence supports Model
1 over Model 2.

In the second case, the objective is to decide which of
the two input distributions is more appropriate under the
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assumption that the correct model is known. Figure 10.3
describes the situation. In this case, Distribution 1 is
selected over Distribution 2 because it assigns a higher
likelihood to the inferredx-value that predicts the data.

Data value

x

Model 
y = m(x)

Distribution 1 Distribution 2

Inferred x

Figure 10.3 Choosing between two distributions
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11 CONCLUSIONS

A general mathematical foundation for uncertainty analysis
is presented. The foundation provides a reasonable and
effective basis to relate prediction uncertainty and
importance of inputs through the notion of statistical
dependence. As one way of comparing families of
conditional prediction distributions, variance ratios
arise naturally as importance indicators. Moreover,
variance ratios derive their effectiveness directly from
consideration of the prediction probability distribution
without regard to any specific form of the modelm(�).
In particular, assumptions of linearity or monotonicity
usually accompanying regression-based methods are not
necessary.

Although variance is generally preferred over regression-
based indicators in evaluation of prediction uncertainty,
regression-based methods have served well in many
applications. In fact, the auxiliary use of regression-based
indicators along with variance-based ones is encouraged.

Estimation for variance-based importance indicators
requires special sampling plans. Replicated LHS, as
presented in the report, is a viable sampling plan for
this purpose. Nevertheless, variance-based methods can
require very many computer runs as compared with the
number needed for regression-based methods, which
require fewer computer runs because of assumptions
they make about the form of the model. In cases where
variance estimates are unstable because of necessarily
small samples, the auxiliary use of regression-based
indicators is encouraged.

Importance of individual inputs and subsets of inputs can
be determined through sequential screening procedures
where importance is indicated with variance ratios,

including correlation ratios and partial correlation ratios.
The screening process is properly checked through an
independent validation step. Validation exercises should
be a regular part of an uncertainty study to confirm input
selection and to quantify various aspects of prediction
uncertainty as related to important inputs.

The report illustrates by way of the analysis applications
several important considerations for uncertainty studies.
Techniques used in the applications provide useful
guidance but will not be applicable in all cases. In
general, conditional prediction uncertainty as described
by estimated probability density functions or plots of
representative values should be examined during input
screening to reveal progress of the method and unusual
behaviors. Such displays can reveal extreme predictions
whose excessive effects on importance indicators is
lessened through the use of the rank transformation.
When analyzing several model outputs simultaneously
in sequential screening, the analyst needs to be alert for
possible masking of an input’s importance for certain of
the outputs due to its selection as important for other
outputs.

Finally, the analysis applications pointed out that rank
correlation coefficients, both ordinary and partial, can be
effective auxiliary indicators of important inputs when
used with variance ratios. However, as demonstrated
in one of the applications, on their own they can fail
to detect important inputs. As a protection, validation
of inputs selected as important is effective to confirm
input selections, to display the full nature of importance
reflected in prediction distributions, and to discover the
existence of any undetected important inputs.
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Appendix A: ADDITIONAL TECHNICAL CONSIDERATIONS

A.1 A General Variance Decomposition

A variance decomposition used by Cox (1982), attributed
to Baybutt and Kurth (1978), consists of a sum of terms
depending on subsets of inputs of size 1, 2, and so forth.

V [Y ] =
mX
i

Vi +
X
i<j

Vij +
X

i<j<k

Vijk

+ � � �+ V12���m

Vijk��� = V [Zijk���]; 1 � i < j < k < � � � � m

Zi = E[Y j Xi]; i = 1; � � � ;m

Zkj = E

"
Y �

mX
i=1

Zi j Xk; Xj

#
; 1 � k � j � m

Zkjl = E

"
Y �

mX
i=1

Zi �
X
n<p

Znp j Xk; Xj; Xl

#
;

1 � k < j < l � m, and so forth

The first summation in the decomposition is of VCEs.
Subsequent terms involve variances of prediction residuals.
The expansion looks very promising for importance
indication. However, it requires that the inputs be
statistically independent. Moreover, there are an excessive
number of terms involved, even for a moderate number
of inputs.

A.2 Entropy

Variance, information and entropy are related concepts. In
particular, relative entropy or Kullback-Leibler distance
(Kullback, 1968) could play an important role as an
indicator of importance for prediction uncertainty. A
helpful discussion of entropy can be found in the
Encyclopedia of Statistical Sciences(Kotz and Johnson,
1982).

The entropyof the density functionfy is defined by

H = �E(log(fy))

= �

Z
log(fy(y))fy(y)dy :

The relative entropyor Kullback-Leibler distanceof
densityfyjsx relative tofy is defined by

I(sx) = �

Z
log

�
fyjsx(y)

fy(y)

�
fy(y)dy

and is a function ofsx. Its expected value is

I = �

Z �Z
log

�
fyjsx(y)

fy(y)

�
fy(y)dy

�
fsx(sx)dsx ;

which is a measure of the differences among the family
of conditional density functions

�
fyjsx

	
. Thus,I might

be used as an importance indicator forSx.

A.3 Derivation of Equation
5–6 and Motivation for the
Partial Correlation Ratio

For the subsetfx; Sxg

V [y] = Vx;Sx [E(y j fx; Sxg)]

+ Ex;Sx(V [y j fx; Sxg]) : (A–1)

Conditioned onSx
�
e.g., usingfyjS

x

�
, it is seen that

V [y j Sx] = VxjSx [E(y j fx; Sxg) j Sx]

+ExjSx(V [y j fx; Sxg] j Sx) :

Expectation overSx produces

ESx(V [y j Sx]) = ESx

�
VxjSx [E(y j fx; Sxg) j Sx]

�
+ Ex;Sx(V [y j fx; Sxg]) ;

which gives

Ex;Sx(V [y j fx; Sxg]) = ESx(V [y j Sx])

� ESx

�
VxjSx [E(y j fx; Sxg) j Sx]

�
: (A–2)

Substitution from Equation A–2 for the last term in
Equation A–1 gives

V [y] = V [E(y j fx; Sxg)] +E(V [y j Sx])

� ES
x

�
VxjSx [E(y j fx; Sxg) j Sx]

�
: (A–3)

Substitution for the second term on the right in Equation
A–3 with

E(V [y j Sx]) = V [y] � V [E(y j Sx)]

and rearrangement of terms produces Equation 5–6,

V [E(y j fx; Sxg)] = V [E(y j Sx)]

+ E(V [E(y j fx; Sxg) j Sx]) :
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A.4 A Useful Derivation Technique

The variance of a sampling distribution can be derived
from the expectation of a sum of squares about the sample
mean. Sums of squares also appear in analysis tables like
the ones in Appendices A.5 and A.6. One way to derive
expectations of sums of squares is to use Equation 5–1
as follows. Theyjk andxj are defined analogously to
those in Appendix A.5. Let

yj =
1

K

KX
k=1

yjk andy =
1

J

JX
j=1

yj :

Then,

E

0
@ JX

j=1

�
yj � y

�2
1
A ' JV

�
yj
�

= J
�
V
�
E
�
yj j xj

��
+E

�
V
�
yj j xj

��	
= J

�
V [E(y j xj)] +

1

K
E(V [y j xj])

�
:

A.5 One-way Analysis of
Variance Analogy

Let f(xj;yjk) j j = 1; � � � ; n andk = 1; � � � ; rg be sample
values with fyjk; k = 1; � � � ; rg independent and
identically distributed as random variables conditioned

on xj, and thefxj; j = 1; � � � ; ng independent and
identically distributed. Thefxj; j = 1; � � � ; ng represent
values of a model inputx. The fyjk; k = 1; � � � ; rg
represent the values of the model output for input valuexj
with sampled values of the inputs other thanx accounted
for by the indexk. Expected values can be found using
the technique of Appendix A.4.

Source of Variation/df Sum of Squares Approx. E(Sum of Squares)

Total
nr � 1 SST=

nP
j=1

rP
k=1

(yjk � y)2 nrV [y]

Betweenx
n� 1 SSB= r

nP
j=1

�
yj � y

�2
nrVx[E(y j xj)] + n�2e

Within x
n(r � 1) SSW=

nP
j=1

rP
k=1

�
yjk � yj

�2
nrEx(V [y j x]) = nr�2e

R2 = SSB=SST

R2

a =

�
SSB�

1

r
SSW

�
=SST

= R2 �
1

r

�
1�R2

�
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A.6 Two-way Analysis of
Variance Analogy

Let f(xt; utj ; ytjk) j k = 1; � � � ; r; j = 1; � � � ; n; and
t = 1; � � � ; sg be sample values withfutj; j = 1; � � � ; ng
independent and identically distributed random variables
conditioned onxt, fytjk; k = 1; � � � ; rg independent
and identically distributed random variables conditioned
on xt andutj, and fxt; t = 1; � � � ; sg independent

and identically distributed. Thefxt; t = 1; � � � ; sg
represent values of a model input (subset)x. The
futj; j = 1; � � � ; ng represent values of another model
inputu whose probability distribution is conditioned onx.
Finally, thefytjk; k = 1; � � � ; rg represent the values of
the model output for input valuesxt andutj with sampled
values of the inputs other thanx and u accounted for
by the indexk. Expected values can be found using the
technique of Appendix A.4.

Source of Variation/df Sum of Squares Approx. E(Sum of Squares)

Total
snr � 1 SST=

sP

t=1

nP

j=1

rP

k=1

(ytjk � y)2 snrV [y]

Betweenx
s � 1 nr

sP

t=1

(yt � y)2 snrVx[E(y j xt)] + nr�2

Within x
s(nr � 1) SSW=

sP

t=1

nP

j=1

rP

k=1

(ytjk � yt)
2 snrEx(V [y j xt]) = snr�2

Betweenu
within x
s(n� 1)

SSB= r
sP

t=1

nP

j=1

�
ytj � yt

�2 snrEx

�
Vujx[E(y j fxt; utjg) j xt]

�

+ sn�2e

Within u
within x
sn(r � 1)

sP

t=1

nP

j=1

rP

k=1

�
ytjk � ytj

�2 snrEx

�
Eujx(V [y j fxt; utjg])

�

= snr�2e

partialR2(u;x) = SSB=SSW

partial incrementalR2(u;x) = SSB=SST
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Appendix B: INPUTS TO MACCS

The names of the MACCS input variables are given below. A few of the names in the table do match those given in the
MACCS User’s Guide (Chanin et al., 1990) because a newer version of the code was used in this study.

1 NUMFIN
2 TCFMCU
3 PLUDUR1
4 PLUDUR2
5 PLHEAT1
6 PLHEAT2
7 PLHITE1
8 RFP1C1
9 RFP1C2
10 RFP1C3

11 RFP1C4
12 RFP1C5
13 RFP1C6
14 RFP1C7
15 RFP1C8
16 RFP1C9
17 RFP2C2
18 RFP2C3
19 RFP2C4
20 RFP2C5

21 RFP2C6
22 RFP2C7
23 RFP2C8
24 RFP2C9
25 BUILDH
26 BUILDW
27 SCLCRW
28 SCLADP
29 SCLEFP
30 YSCALE

31 ZSCALE
32 VDEPOS1
33 VDEPOS2
34 VDEPOS3
35 CWASH1
36 CWASH2
37 TCORUN
38 TDELAY
39 LASEVA
40 ESPEED

41 P2DOS1
42 PHS2T2
43 EVFRAC
44 CSFACTE
45 CSFACTN
46 GSHFACE
47 GSHFACN
48 PROTINN
49 EFFACA1
50 EFFACB1

51 EFFACA2
52 EFFACB2
53 EFFACA3
54 EFFACB3
55 EIFACA1
56 EIFACB1
57 EIFACA2
58 EIFACB2
59 TIMHOT
60 DOSHOT

61 TTOSH2
62 CSFACTS
63 GSHFACS
64 PROTINS
65 EFFTHR1
66 EFFTHR2
67 EITHRE1
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Appendix C: BREAKDOWN OF THE CORRELATION COEFFICIENT

The correlation coefficient� is an effective regression-
based indicator of importance under the assumption of an
approximately linear relation between model inputx and
output predictiony. When the actual relation is nonlinear,
the correlation coefficient can break down as an indicator
of importance. In a simple but realistic example based on
an event tree calculation,� can fail to detect importance
while the correlation ratio�2 functions correctly to indicate
importance. The event tree is indicated in Figure C.1.

   1.5

   4

    1   

   2

Consequence

values

1-x
2

1-x
1

1-x
1

   x
1

   x
2

   x
1

Figure C.1 Simple event tree

Corresponding to the event tree, the model predictiony is
the expected consequence which depends on inputsx1 and
x2. The expected consequence is the sum of the product
of probabilities through the tree times consequence values.
It is given by

y = �2:5x2
1
+ x1(x2 + 2)� x2 + 2 :

When the inputsx1 and x2 have independent uniform
probability distributions on the interval(0; 1), the exact
values of correlation coefficients and correlation ratios for
x1 andx2 can be derived to show the following.

• Becausey is a nonlinear function ofx1, it is expected
that the correlation coefficient may not adequately
express the importance ofx1. In fact, this example
points out the extreme situation where the covariance
betweenx1 and y is 0. Therefore, althoughx1 is
clearly an important input, the correlation between
y and x1 is 0:

�1 = 0 :

• The correlation ratio forx1 is given by

�2
1
= 5=9

= 2=3� 1=9 :

The correlation ratio indicates thatx1 accounts for
approximately2=3 of the (prediction) variance ofy.

• The expected consequencey is a linear function
of x2. Therefore, as expected, the correlation ratio
and the correlation coefficient squared have to be
the same value:

�2
2
= �2

2
= 1=3 :

The example also points out the nonadditivity of the VCE
for individual inputs as suggested by the fraction1=9 in
the value of�2

1
. A PVCE calculation for either input

shows the additivity described in Equation 5–11.
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